

BUILDING AND DEPLOYING AN
EXTENSIBLE CAA SYSTEM: FROM

THEORY TO PRACTICE

John Woodbury
Mark Ratcliffe
Lynda Thomas

Building and Deploying an Extensible CAA System:
from theory to practice

John Woodbury
Dr. Mark Ratcliffe
Dr. Lynda Thomas

Computer Science Department

University of Aberystwyth
01970 622427

jyw@aber.ac.uk
mbr@aber.ac.uk
ltt@aber.ac.uk

Abstract

Over a two-year period we have devised and deployed over 2000 objective tests both
as summative and formative tests in a range of Computer Science modules as well as
diagnostic tests via the Web. From modest beginnings with an introductory module on
programming for first year students we extended the service to other staff and modules
including a Master’s level module on programming, an introductory module to the PC
and a module on computer hardware.
We recorded our experience supplying support to staff and students through a variety of
documents and procedures, including addressing the practical and security issues of
deploying CAA via the Web. This information is available via the Web to staff and
students.
Feedback was elicited from the students after each test and this information is recorded
in a database available on the Web.
We have been developing an extensible and modular system called MAPView
(Monitoring, Access and Provision) using the development method we teach our
students and written in our teaching language Java. We have used our students to
develop various aspects of this system as part of their academic work and we use it as
a “near experience” example in our modules on software engineering, project
management and object-oriented design.
Our system is centered on the lecturer’s learning objectives for a course of study.
Questions and tests are constructed with explicit reference to these learning objectives.
Topical feedback is provided to the students via emails automatically generated from
test results, using this as a tool to revisit individual student problems. We have sought to
prove that our method of system development is flexible and responsive to the
individual and changing requirements of teachers.

Keywords

Java, learning technology, object-oriented, objective testing, student views on CAA,
Web based assessment

Introduction

This paper reports on our experiences creating and deploying objective tests via the
Web and subsequent events between September 1999 and May 2001.

During the deployment of these tests and subsequent developments that followed as a
result of that experience we have recorded at intervals and by different methods
feedback from our students, using this to inform future developments. We did this both
to ensure that our prime responsibility to our students (described by Ramsden as
providing a climate in which understanding can take place (Ramsden , 2000)) would be
fulfilled, and the students’ best interests protected by seeking early and clear indications
of the inevitable mistakes involved in innovation. This student commentary is available
as raw data on our web site (Woodbury, 2001) and is analyzed there and in a
subsequent section in this paper titled Feedback: student reaction to objective testing.

We began as relative CAA neophytes and it was our attempts to get grips with this
naivety and the unique problems of assessing students using the Web that led, often
serendipitously, to renewed reflection on and enthusiasm for our own teaching.

This observation along with others is in accord with the results of Stephen and Mascia’s
1997 survey of the CAA usage in HE in the UK (Stephens and Mascia, 1997) which
sadly we only became aware of after our first year deploying objective tests. Reading
this report was therefore an exercise in recognition and affirmation of our own
experience.

We record our experiences as a phenomenon and make our data available as an
example “made flesh” and illustrative of the results published in Stephens and Mascia’s
report. We hope that it may help others embarking or engaged in a similar exercise.

Beginnings: building the question bank and introducing objective tests

Populating the question bank

During the summer of 1999 a part-time member of staff was employed to write multiple
choice questions (MCQs) for a first year module in Software Engineering.

We were aware from the beginning of Bloom’s Taxonomy of Educational Objectives and
its hierarchical nature (Bloom, 1956): moving through knowledge, comprehension,

application, analysis, synthesis to evaluation and tried to frame our questions to match
these criteria.
In addition we felt that the distractors, i.e. those plausible wrong answers to a question
we offered the candidates were an opportunity to monitor the faulty cognitive models
our students currently held.

Rust (Rust, 1973) estimated in his excellent guide, “Objective Testing in Education and
Training”, the cost of writing, checking, moderating, pre-testing and allocating a place in
a test scheme to an objective question (known in the jargon as “items”) at about £10 or
calculating to take inflation into account, about £40 in 2000 (Friedman, 2001). Those
employed to create item banks are often part-timers or post-grads and relatively
inexpensive but the front loaded cost for deploying objective tests, the investment made
in the creation and quality audit of the question bank, remains high. Of course, in
contrast to conventional subjective tests, considerable cost savings are made with the
automated marking of an objective test both in terms of money and frazzled nerves.

Preparing to deploy the tests

In preparation for the tests and in response to what we understood to be good practice
(Carneson et al, 2001) we developed a set of support documents both for the staff and
students and made these available via the Web (Woodbury, 2001). As objective testing
is likely to be a new experience for first year students we provided a web site describing
what objective tests were, how they were to be assessed and provided an online
example test for them to try. For lecturers we provided documents describing what
objective tests were, particularly their strengths and weaknesses with respect to the
familiar subjective test, along with some heuristics for good item writing. In addition we
produced support documents for invigilators describing objective tests, a form to act as
a log for keeping a record of incidents and their suggestions and most importantly, a
protocol for conducting the tests.

These documents can be downloaded from our web site (Woodbury, 2001).

Our primary concerns revolved around question bank and test security, network
reliability, possible cheating and student acceptance.

Securing the question bank and tests

As we have seen an item bank is an expensive asset to develop and we did not want it
compromised by becoming publicly available. Keeping the item bank in a database
secure on a central filestore is a fairly straightforward task compared to keeping a test
delivered on a Web browser secure and our response to this was a combination of the
procedural and technical.

During tests students are not allowed access to their network filestore, the Web browser
is presented without menus or menubars and we include a clear warning in the rubric

before tests indicating that we are monitoring network traffic and attempts to subvert the
system will be strictly dealt with under existing College regulations (Woodbury, 2001).
No other applications, for example an emailer, can be opened other than a browser.

Invigilating a computer-based test

Unlike the standard subjective test, the invigilation of which is organized and
administered centrally in our University using time-honoured ritual, there exists no such
equivalent protocol for invigilating objective tests delivered via the Web. Such tests
have special requirements some general and some specific to delivery issues such as
scheduling.

The tests are accessed and submitted across the campus network so a fundamental
requirement is high confidence that the network is reliable and predictable during the
period of the test. In order to do this we need to liaise with those who maintain the
system and avoid such things as routine maintenance during an examination. The
system support for our network is run by another organization on campus but it would
be fair to say that as Computer scientists we share many cultural assumptions and
speak the same language. In addition there are many personal connections between
our department and the support services as they often recruit from our staff and
students. This makes communication and the necessary cooperation easier. If we give
sufficient notice then the support services defer any operation that may interfere with
our tests and remain on standby should a problem arise. Even so there were several
incidents when students were disconcerted for example, when automatic virus checkers
started running.

Although our experience in this respect has been good, anecdotal, but illustrative of the
kind of problem that can arise in a computer mediated environment, we offer the
following incident that occurred during one of our test series.

Delivering tests in a networked environment

The summative tests are presented to all the students at the same time in several
different venues whereas our formative tests are delivered in the same venue over the
course of a week. During the half hour before a summative test it is prudent to
scrutinize each workstation room where tests are to be deployed for such things as the
number of working machines against the number of candidates scheduled to take the
test in that room. During one of these checks it was discovered that a number of
machines had a warning dialog couched in the impenetrable jargon and alarmist
language so neatly described by Norman in The Psychology of Everyday Things (e.g.
“Fatal error”, “kill process” Norman, 1988) as an occupational hazard for computer
program developers. In this instance the message was a countdown message to a
routine operation warning the user that they should save their work. However, because
no one had been using the computers for some time, five of these messages were
stacked one behind the other on the monitors of a number of computers. As only the

time part of the message was changing in each dialog, dismissing a dialog appeared to
have no effect, contrary to good HCI (Human Computer Interaction) practice: an
information dialog should go once acknowledged (Schneiderman, 1998). This is the
kind of event that can unsettle an already nervous candidate. It certainly unsettled the
invigilator.

The protocol for “Launching” a computer-based test

Another difference we discovered between computer-based tests and conventional
tests is the time overhead accrued in setting up the tests on the students’ computer
screens. Logging in and navigating to the appropriate pages, taking the students
through the password protection login protecting the test, taking them through the
procedure of entering their details in the test preamble and reading the rubric can
typically take 10 minutes. This may appear a long time for anxious students to wait for
a test to start but we have never received any complaint about this part of our
administration of the test (Woodbury, 2001). The invigilator needs to take firm control
leading the students carefully through each step while remaining sympathetic and calm
during the inevitable problems. We always have two invigilators for a workstation room
with typically about 30 students. One invigilator does the “launch” whilst the other acts
as a roving troubleshooter.

Feedback: student reaction to objective testing

One of our basic requirements was to carry the students with us and our strategy was to
engage them in the setting up and refining of the tests. We made explicit appeals
asking them to help us improve our provision (cf. the document “Scratch pad”
Woodbury, 2001).

To this end we elicited feedback in several different ways.

Feedback using “scratch pads” on each test for a survey: 1999-2000

We provide for all tests a form called a “scratch pad” for “workings out”, collecting these
at the end of the test. We take the opportunity to ask the students:

1. to note down when they started the test and when they finished,
2. to note whether they used the online support documentation,
3. to note down on a scale of 1 to 5 how difficult they found the test,
4. to give us feedback about any problems they had with the questions or

errors they detected,
5. to give us, towards the end of the academic year, their opinions on

objective tests as a way of assessing them and how we administered
them.

We have entered the results from this first year survey into a database and made this
available on the Web (Woodbury, 2001). Reference numbers in the following table
index individual entries that can be read in their entirety, including original spelling and
grammar, in those Web pages.

Table 1: Students perceived difficulty
of tests

Difficulty

Level
Responses %

Very
Difficult

24 10.3

Difficult 108 46.3
Moderate 96 41.2

Easy 5 2.2
Very Easy 0 0.0

Total 233

Table 2: Results from the “scratch pad” survey for a
first year course of 125 students

Sept 1999 – May 2000
 Responses True %

Used online support
documentation

243 66 27

Used “scratch pad” 359 255 71
Gave feedback on
questions

359 182 51

Used “scratch pad”
for “workings out”

359 128 36

Positive feedback on
testing

 41

Negative feedback
on testing

 33

Positive and
negative feedback
on testing

 22

Table 3: Positive feedback on tests

 Reference numbers
Less stressful than conventional tests 6 276, 277, 283, 290, 291,324
Easier for examiner to mark 3 276, 284, 331
Provides quicker feedback 1 281
Less writing is involved 1 276
Able to demonstrate knowledge 1 282
Tests knowledge and understanding 4 283,284,294,313
Preferred to subjective examinations 17 283, 285, 287, 289, 292,

295, 297, 313, 317, 320,
327, 328, 329, 330, 331,
332, 334

Prompts continuous revision 11 280, 287, 288, 295, 298,
299, 312, 315, 318, 320, 334

Easier for non native speaker 1 299
Tests and questions concise and clear 1 300

Prefer working on a computer 1 300
Provides information of progress to student
and lecturer

1 280

Easier for people with a learning disability 1 289

Table 4: Negative feedback on tests

 Reference numbers
Needed to be more difficult 2 175, 294
Poor state of equipment (e.g. dirty mice) 1 275
Questions were
tricky/ambiguous/faulty/poorly written

4 8, 286, 316, 360

Not enough feedback from tests/individual
questions

5 279, 285, 292, 311, 315

Difficulties with presentation (long
questions required scrolling (4))

9 41, 290, 296, 314, 331, 332,
338, 340, 351

Would like both types of exam 1 312
Would prefer written exam 2 279, 319
Too constrained: not stretching enough,
not enough freedom to express
understanding

7 279, 296, 313, 314, 317, 318,
319

Would have liked fewer questions 2 334, 338

We used the information about when students started and finished exams to calculate
how long questions took to answer on average and this allowed us to fine tune the
number of questions to the length of time proposed for an exam (about 1.5
minutes/question).

We discovered that less than one third of the students had consulted the online
documentation by the end of the first semester when we stopped asking the question.

A large number of students had used the “scratch pad” in some way and there may be
valuable pointers in the things that students choose to “work out” towards the things
they have difficulty with and how.

Just over half the students gave us feedback on the questions themselves. This
information ranged from pointing out spelling errors and typos, suggestions regarding
the layout and presentation of questions to suggestions that certain questions or the
choices offered for the answer were in error (unintentionally). Sometimes the questions
were poorly worded or the answer offered faulty and this was another valuable
dimension to our quality audit. However, sometimes the errors the students were

pointing to turned out to be misconceptions on their part and this provided interesting
evidence of the faulty models students had in their minds of the material we were
presenting them (Laurillard, 1999).

Mid-module feedback: 2001

For this first year module on Computer Architecture the students were provided with two
versions of an online objective test. One version gave feedback on each question
answered and the other general feedback on submission of the test. Half way through
the course and mid-way through a lecture students were asked to complete two yellow
Post-Its, labeling one “Good” and the other “Bad”. They entered anonymously their
critique on the course and lecturer, sticking the Post-Its to the lecture room door on
leaving. Fifteen percent cited the online tests as a useful revision aid.

Feedback from end of module student questionnaires: 2001

The figure below illustrates the correlation between the dates when the lecturer for this
course reminded the students during a lecture of the online test existence and the test’s
subsequent use.

Figure 1: Web usage of a formative test for a first year module on Computer Architecture:
generated using MAPView

End-of-module student questionnaire: 2001

Student questionnaires are provided online at the end of modules.

This feedback comes from the end-of-module questionnaire for the first year Software
Engineering module that was the subject of the “Scratch Pad” survey in the year
1999/2000 referenced above. This module is assessed 50% on coursework and 50%
on the best result of two mid-term tests and has 120 students. The students were asked
what they thought of the way they were assessed: of the 57 respondents to the
questionnaire 12 rated the objective tests as good/excellent, 6 said they appreciated the
frequent feedback on how they were doing.

Building on experience: MAP making

What we had learnt from our first year deploying our objective tests was an amalgam of
our own observations and the feedback we had from our students.

The limitations of our proprietary software leads us to experimentation

We had from the beginning met the limitations of the proprietary software we were using
by creating our own solutions. With the original software the user interface for entering
questions and creating tests was found to be too small as well as irritating in its
unforgiving functional behavior: e.g. the questions for tests could only be listed in the
order they had been entered into the underlying database, a list of questions that had
been compiled for a test had to be re-entered if a question had been omitted and tests
could not be saved and recalled at a later date for editing and reuse. We built our own
interface and added the desired functionality to meet these problems.

Although the results from a test were automatically calculated within half an hour of the
test’s completion we could not inform the individual students of their results. We added
software that generated personalized email shots for students telling them what their
score had been and whether they had passed or failed. We suggested to those that
had failed that if they were concerned they could see the lecturer concerned.

This proved to be popular with the students and we began to think of what further
possibilities there might be. In the following year we provided more focused feedback
and we were able to analyse a student’s performance on a test and generate an email
pointing to them with links to the learning objectives they needed to revisit. Figure 2
plots the reaction of the students to these emails.

Figure 2: Students accessing a module’s learning objectives after email feedback from a test:
generated using MAPView

We consolidated work we had already begun on making the Web presentation of the
tests more user-friendly in accordance with good practice by changing the colour
scheme and layout of the questions and answers, adding extra navigation so that a test
could be taken without using scrollbars (Schneiderman, 1999).

Putting our experience in context

The first year cohort of students presents a broad demographic profile, bringing a wide
range of past experience and skills, and a variety of learning styles.

We felt we needed to monitor students’ progress more closely, particularly first year
students who may bring poor study habits and a surface approach to their studies
(Ramsden, 2000), in order to intervene before their academic careers were
compromised. As our students work increasingly in a digital environment as described
by the director of the Media Laboratory of the Massachusetts Institute of Technology
(Negroponte, 1996) we looked there for indicators that would give an early warning of
pending trouble, focusing on their attendance and performance in practicals.

The nature of higher education and the position of teaching have changed over its
recent history.

“Most discussions, and most applications, of PIs [Performance Indicators] to higher
education have been concerned with research performance. The stress on research to
the exclusion of teaching (and related functions of higher education, such as the
maintenance of values associated with tolerance and diversity, and service to the
community) appears to be leading to the predictable consequence of a shift in effort
from teaching to research..” (Ramsden, pp. 236-7)

The introduction of this accountancy approach to the assessment of teaching with its
increasing emphasis on accountability and staff appraisal has led to increased
administration overheads and, added to increased teaching commitments, escalating
workloads.

Some basic requirements for a solution

We wanted to provide a tool that would allow all those engaged in the teaching
enterprise a service equivalent to that provided by integrated office tools; the
combination of word processors, databases and spreadsheets that we have become
familiar with. Such a tool would have to be flexible and adaptable to the changing
demands of reflective teaching and extendible in order to easily incorporate innovative
ideas.

The introduction of educational technology in the UK has a chequered history littered
with failed and counterproductive projects driven by technological determinism (Beynon
and Mackay, 1991; Beynon and Mackay, 1993). As Computer scientists we had to be
aware that we are engaged in a discipline that, although it addresses a wide spectrum
of interests, has at its heart a dominant technology and that we may be particularly
suseptible to the sirens of this determinism: the drive and exhilaration of developing the
tool may by degrees overshadow the purpose.

Description of MAP and MAPView

Monitoring, Assessment and Provision were the three key tasks that we identified from
our first year’s experience and alludes to the responsibility the teacher has in supplying
guidance and support in the form of a cognitive map of a subject area.

MAPView is the application for implementing MAP, its interface composed of a series of
tabbed folders that can be added or removed according to the user’s needs. Each tab
provides a set of related services, for example, the creating, editing and publishing of
objective questions and tests. These tabs are described in Table 5 and illustrated in
Figure 3.

Figure 3: MAPView: Question bank and test management tab.

Table 5: MAPView: a listing of the current tabs and brief description of their functions.

Tab
Description

Question bank and test
manager:

The user can create, edit and review questions as well as create
and publish a test or edit an existing one.
Statistics with respect to a question’s usage are presented.
Questions are explicitly connected to one or more learning
objectives for the module.

Learning objectives: The user can create an hierarchical structure of learning objectives
and publish these as a web page.

Test results: The user can access overall and individual results from a test and
generate suitable email shots to the students containing their
results and pointers to the learning objectives they need to revisit.

Student record: The names and photos for students as well as pointers to their test
and practical records.

Monitors: The user can analyze web usage for a given web page. See
figures 1 and 2 for screen captures of this interface.

Worksheets/Project
development:

The user can create and publish practical worksheets and project
assignments.

Worksheet history: The user can monitor worksheet completion records.

The design process

 The changing context of software development: procedural programming and object-
oriented programming

There has been a paradigm shift in recent years with respect to programming
languages.
Procedural programming defines the task to be modeled as a series of instructions to be
carried out sequentially, elaborating with repetition of instructions and alternative paths
of execution. Object-oriented programming attempts to solve the task by identifying the
entities or objects that populate the world in which the task takes place and defining
their behavior and interaction.

It is argued that the latter approach is more likely to yield satisfactory and robust
solutions to problems because it more closely models the world as we understand it and
therefore can be more readily understood by both client and developer, and
consequently more easily manipulated and adapted to changing circumstance.

Historically the most problematic part of commissioning software is the phase of
requirements capture and analysis. The client and developer may not share the same
descriptions of the world, a client often wrongly assuming that what is given and
apparent to themselves will also be given and apparent to the developer. Experience
also reveals that because the process of project development has an element of
discovery requirements shift: what is required becomes more apparent as the project
progresses. Historically the costs for the software development cycle fall predominately
in the maintenance phase after delivery of the software: “adaptive” maintenance
addresses all those areas you didn’t think of at the time.

Object-oriented development frees all parties concerned from the unrealistic expectation
that all can be foreseen. The iterative development of prototypes ensures that there is
always a working product that can be used, evaluated and elaborated, keeping the
costs of enhancement under control.

In addition, the object-oriented paradigm allows the developer to think at the appropriate
level of abstraction. Procedural programming with it emphasis on sequence and
procedure more closely mirrors the essential nature of a computer’s hardware and
reflects the programmer’s historic concern with conserving resources: computing speed
and storage. With the rapid development in both these areas and the consequent fall in
costs and improvement in performance the emphasis has shifted way from secondary
concerns about performance supported by the underlying infrastructure to the more
primary concerns of the task at hand. Modeling at the appropriate conceptual level
leads to designs that are simple, readily understandable and robust.

Capturing the design

The Rational Unified Process specifies systems that are user centric (Krutchen, 2000).
The first task of the developer is to identify those who will use a system (the actors) and
how they will use it (the use cases). The term actor identifies anybody (or, strictly
speaking, anything) that gains benefit from the system and describes the rôles people
play in the system rather than identifying individuals. It is therefore possible to have the
same person fulfilling several rôles, for example as a teacher and as an administrator.

Some of the users identified are: student, question author, question reviewer, test
author, test reviewer, worksheet and assignment author, lecturer and demonstrator.
More can be added as required.

Some of the use cases identified here might be: “a user authors a question”, another “a
user reviews a question” and so on.

Some of the objects and their relationships are identified as: Questions, Tests that are
composed of Questions and produce Results, Questions that address one or more
Learning Objectives, Results that are processed to produce Emails for feedback to
Students.

Finding a design that is extendible

This design will be extendible if we can easily add new objects and flexible if we can
revisit existing objects and elaborate them.

During the last academic year a final year student (Regan, 2000) has successfully taken
on the task of implementing the use cases involved with the authoring, publishing on the
Web and monitoring of practical worksheets. Regan was able to develop independently
and integrate “plug in” tabs for these use cases (cf. Worksheet/ProjectDev and
Worksheet History, Woodbury, 2001).

Finding a design that is adaptable

Another final year student, Claire Jones, volunteered to revisit the Test object and she
has added, among other enhancements, ones that allow us to: record interim results
during a test (rather than just at final submission), provide feedback to the test
candidate using visual cues to indicate previously answered questions and indicating
prior to final submission any questions that have not been answered.

Using MAPView as an exemplar in our curriculum

MAPView is written in Java, the teaching language for our department, and is designed
using the project development method (Krutchen, 2000) that we use as an exemplar in
our third year module on object-oriented analysis and design.

We use MAPView as a case study in our modules where appropriate to help our
students bridge the gap between the experiential and the academic identified by
Laurillard as first order and second order learning respectively (Laurillard, 1999) .

Conclusions

The introduction of CAA in the form of objective tests in multiple choice question format
has generated much but not universal enthusiasm among students and staff.

We have deployed objective tests in several modules with varying degrees of
involvement with other staff, in some instances creating and running the tests, in others
creating the tests and letting others administer them, to handing over the software with
10 minutes of instruction and providing on call support.

Objective testing in the frequency we have deployed it has provided timely feedback
acknowledged useful by both staff and students.

Students have been involved in the implementation of objective testing throughout,
giving us frequent feedback via different mechanisms, and we think that this has
reinforced the importance of feedback in teaching in its dictionary sense: that it is a
cyclic process (the students gave us feedback on our testing and we gave them
feedback on their test performances) and that inherent in the concept of feedback is
modification. We were able to adapt to what the students told us about the objective
tests and how we administered them in a short enough time frame for them to see
results and they in turn had timely and directed feedback in time for them to take
remedial action.

Teaching innovation in HE is likely to be a slow process given the historic context in
which it takes place(Laurillard 1999), and there will be some staff who greet any attempt
to help students as dangerous “spoonfeeding” while many others will exhibit an attitude
of “benign indifference”(Ramsden, 2000). Needless to say that in such circumstances
funding is sufficient only to provide innovation with a precarious form of life in the
interstices between more important things.

We have used the object-oriented paradigm with an appropriate process to develop our
software, integrating adaptations or extensions with little effort.

Our experiences with bringing students into the development process for MAPView both
directly as developers or indirectly as an exemplar in our teaching have been positive
for all parties concerned.

References

Beynon, J. and Mackay, H. (eds) (1993) Computers into classrooms: more questions
than answersI London: Falmer Press

Beynon, J. and Mackay, H. (eds) (1991) Technological literacy and the curriculum
London : Falmer Press

Beynon, J. and Mackay, H. (eds) (1991) Understanding technology in eductation
London : Falmer Press

Bloom, B.S., Engelhart, M.D., Furst, E.J., Hill, W.H., and Krathwohl, D.R. (1956)
Taxonomy of Educational Objectives: Cognitive Domain New York: McKay

Carneson, J. Delpierre, G. and Masters, K. Designing and managing Mcq’s
<http://www.le.ac.uk/cc/ltg/castle/resources/mcqman/mcqcont.html > (25 May 2001)

Friedman, S Morgan, The Inflation Calculator
<http://www.westegg.com/inflation> (20 May 2001)

Krutchen, Phillipe (2000) The Rational Unified Process: An Introduction Second Edition
London: Addison-Wesley

Laurillard, D (1999) Rethinking University Teaching, a framework for the effective use of
educational technology London: Routledge

Negroponte, N (1996) Being Digital London: Hodder and Stoughton

Norman, D A (1988) The Psychology of Everyday Things USA: Harper Collins

Ramsden, P (2000) Learning to Teach in Higher Education London: Routledge

Regan, B (2001) Enhancements to a Directed Learning Environment CS39030 (A final
year project)

Rust, W B, (1973) Objective Testing in Education and Training London: Sir Isaac
Pitman and Sons

Shneiderman, B (1998) Designing the User Interface: Strategies for Effective Human-
Computer Interaction Third Edition Harlow: Addison-Wesley

Stephens, D. and Mascia, J. (1967) Results of a Survey into the use of Computer-
Assisted Assessment in Institutions of Higher Education in the UK. January 1997
<http:www.lboro.ac.uk/service/fli/flicaa/downloads/survey.pdf> (20 April 2001)

Woodbury, J (2001) Computer Aided Assessment: Computer Science Aberystwyth
<http://users.aber.ac.uk/jyw/MAP> (25 May 2001)

	John Woodbury
	Abstract
	Keywords
	Introduction
	Beginnings: building the question bank and introducing objective tests
	Populating the question bank
	Preparing to deploy the tests
	Securing the question bank and tests
	Invigilating a computer-based test
	Delivering tests in a networked environment
	The protocol for “Launching” a computer-based test

	Feedback: student reaction to objective testing
	Feedback using “scratch pads” on each test for a survey: 1999-2000
	Mid-module feedback: 2001
	Feedback from end of module student questionnaires: 2001
	End-of-module student questionnaire: 2001

	Building on experience: MAP making
	The limitations of our proprietary software leads us to experimentation
	Putting our experience in context
	Some basic requirements for a solution
	Description of MAP and MAPView
	
	
	Tab

	The design process
	The changing context of software development: procedural programming and object-oriented programming
	Capturing the design
	Finding a design that is extendible
	Finding a design that is adaptable
	Using MAPView as an exemplar in our curriculum

	Conclusions
	London : Falmer Press

