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Abstract

Rigorous mathematics is preferable to computer simulations for analysing the
scoring distributions obtained by guesser’s in objective questions. The results
obtained are more accurate, efficient and reliable. As an example, we show
that scoring in objective Multiple Response Questions (MRQ) and objective
Multiple Choice Questions (MCQ) is governed by the hypergeometric
distribution. Hence, we consider how partial credit and confidence levels can
be accounted for by adopting suitable scoring schemes for MCQ and MRQ
objective questions. The Mean Uneducated Guesser's Score may be
specified as zero (MUGS = 0) or some other value in advance, rather than
being obtained by trial and error. The importance of mathematics in the
design of CAA scoring systems is highlighted.

Mathematics in CAA

Objective testing and CAA is widely used for mathematics, but the use of
mathematics in designing and analysing questions is less frequent. \While
most other subject areas exploit the common benefits of CAA, mathematics
has a special contribution to make in the understanding of objective testing
and its effective use. It is unfortunate that the avoidance of mathematics can
lead to inappropriate use of CAA or unnecessary use of computers.

ltem analysis (McAlpine, 2002) is a well-established application of
mathematics (statistics) used for measuring the effectiveness of individual test
questions (items).

Usually in the UK we restrict ourselves to considering the facility, a measure
of the difficulty of a question, and the discrimination, a measure of how well
the score on one question correlates with the test as a whole. The facility and
discrimination of questions are calculated after a test has been marked and
are easily included in reports by CAA software such as Question Mark
Perception. Item Response Theory is more complicated, is widely used in the
US and can include a third parameter, the probability of minimal ability
candidates getting a question correct, C.
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C = Mean Uneducated Guesser’s Score = MUGS
Maximum Score MS

For example, in a standard 4-choice MCQ with 1 mark for the correct choice
and 0 marks for an incorrect choice, C = 0.25/1 = 0.25.

The aim of this paper is to consider what light mathematics can throw upon
the scoring of objective questions. By analysing the scoring of common
objective question types mathematically, some useful formulae and results
are derived. These results provide scoring insight and help in identifying fair
scoring strategies, which allow for partial credit and differing confidence
levels.

Mean Uneducated Guesser’s Score

This article was motivated by a paper at the 6" international CAA conference
(Mackenzie and O’Hare , 2002). The authors developed an empirical Marking
Simulator to assist test designers in question and test scoring. They used a
Monte Carlo technique to determine (what they call) the base level guess
factor or Mean Uneducated Guesser's Score (MUGS in our terminology)
together with score distributions and percentage pass rates for different
question types. Their computer simulations are successful in deriving some
practical tables of results, but they:

¢ lack precision
¢ are inefficient and inelegant
¢ lack insight into the underlying mathematics

The probability of a fair coin coming down heads is not derived efficiently by
tossing it 5000 times, the minimum number of trials used in their simulations!
The authors argue that the large variety of question types used in their
TRIADS system makes resort to simulations necessary. Nevertheless, all the
tables that they provide could be generated analytically from formulae.

Most of the simulations yield a non-zero MUGS value. A value of 0 makes
logical sense, but it does lead into the contentious issue of negative marking,
for which Ryle (1996) offers a robust defence.

Three other papers at the same conference provoked further related
questions.

1. Harper (CAAC 2002) considers post-processing marks to allow for
guessing. How can scoring be set up for common objective question
types to avoid post-processing, yet still allow for guessing?

2. Davies (CAAC 2002) considers the effect of using of explicitly specified
confidence levels by students in MCQs. How can scoring be set up in
such a way as to allow implicit specification of confidence levels by
students?
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3. McGuire et al.(CAAC 2002) consider issues of partial credit. How can
scoring of standard objective question types address issues of partial
credit?

Constrained and Unconstrained MCQs

Consider the humble MCQ. The conventional MCQ is constrained, where
one and only one answer can be selected. Given one (correct) key and three
(incorrect) distracters, a student who can eliminate two incorrect answers (or
knows that the correct answer is one of two) may select an incorrect answer,
gaining no credit for partial knowledge. A scoring scheme of 3 for the correct
answer and —1 for an incorrect answer, despite having MUGS = 0, would
award such a student negative marks!

Yet this simple MCQ can be delivered in one of three modes:
Constrained
number of selections allowed = number of correct answers = 1

Partially constrained
number of choices > max number of selections allowed > number of correct
answers

Unconstrained
maximum number of selections allowed = number of choices

However many selections are allowed, MUGS = O still holds for this scoring
scheme when it is applied cumulatively. The difference is that the “stakes”
have been changed. The inclusion of the correct answer in two selections
only scores 3-1 = 2 compared with the selection of a single correct choice
which scores 3.

If this MCQ becomes unconstrained, a student may select more than one
answer. When cumulative scoring of 3 for a correct answer and —1 for an
incorrect answer is adopted, any score between -3 and +3 can be obtained.
A student able to eliminate two incorrect answers with confidence would be
awarded 2 marks, a student able to eliminate one incorrect answer with
confidence would be awarded 1 mark and so on.

The process of eliminating two answers is familiar enough to contestants in

“Who Wants to be a Millionaire” when they go 50:50. The following table 1
shows how the scoring operates for different modes of MCQ delivery
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Mode max number of max score min score MUGS
selections made

constrained 1 3 (Ya) -1(%) 0
partially constrained 2 2(%) -2(%) 0
partially constrained 3 1(4) -3 (%) 0
unconstrained 4 o(1) O 0

Table 1 Scores (and Probabilities) for Different MCQ Delivery Modes

The corresponding probabilities are shown in brackets. In an unconstrained
question a guesser can decide how many selections to make: gambling on
getting low scores with higher probabilities than high scores and vice versa.
Imagine a class of male and female guessers! The males might like to
gamble, but the females play it safe. While

MUGS = 0 for both groups, the spread of results for the male group would be
greater.

An important aspect of intelligently constructed scoring systems is that they
are carefully explained to students. When students recognise that the aim is
to increase the fairness of objective test scoring, support for alternative
systems follows.

Constrained and Unconstrained MRQs

This approach becomes more interesting when it is applied to other question
types.

A multiple response question or MRQ can be regarded as the generalisation
of an MCQ with a wider range of scoring patterns possible. While Mackenzie
and O’Hare do not include unconstrained MCQs among their tables, the vast
majority of the questions, which they do consider, are MRQs of different
types. For example, Table 2 shows typical results from their computer
simulation of a constrained MRQ where 2 correct answers are to be selected
from 5 possible choices :
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Number of correct answers = 2 Total number of options = 5
Constrained delivery Negative scores resolved to zero
Number of iterations = 5000 Score for correct answer = 100
Residual BLGF = (((Q% - BLGF)/(100-BLGF)*100)

[BLGF = Base level Guess Factor = MUGS = Mean Uneducated Guesser’'s
Score]

Negative scores on incorrect options

Parameter 0 -10 -20 -30 -40 -50 -60
BLGF 40 34 28 21 17 9 10
% passing at 40% 70 71 10 9 11 9 10

% passing at 40% of (100-BLGF) 10 10 10 9 11 9 10

40% pass mark equiv at 100-BLGF 64 60 57 53 50 46
45

Residual BLGF assuming 20 15 12 9 11 9 10

Qscore =0 at BLGF

Score Node List 1 0 0 0 0 0 0 0

100
3 100 100 100 100 100

% of candidates scoring on each node
1 30 29 30 30 30 91 90
2 60 61 59 61 59 9 10
3 10 10 10 9 11

Table 2 Scoring Simulations for an MRQ 2/5 with Constrained Selection
(extracted from Mackenzie and O’Hare, 2002, where it is incorrectly
captioned)

This work raised a variety of questions, for which there were no immediate
answers:

1. Could the tables of Mackenzie and O’'Hare be generated algebraically
without resort to Monte Carlo methods?

2. Is there a scoring scheme for MRQ questions which yields an expected
mark of zero for guessers (MUGS=0), analogous to the MRQ.

3. How should the scoring be adjusted to achieve a non-zero mean
uneducated guesser’s score (MUGS = C)?

4. Is such a scoring scheme fair, with similar benefits for partial credit and
expression of confidence?
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and lastly the rather more mundane question

5. Is there a sensible notation which can be used for specifying objective
questions?

e.g. MRQ(C2/5,0,0) might be used to define a constrained multiple response

question with two choices correct out of 5, a mean uneducated guesser’s

score of zero and all negative scores resolved to zero.

Considering the first question mathematically, the percentage of candidates
scoring on each of the three nodes in Table 2 is governed by the probabilities

o

P(2 correct) = % =0.1 P(1 correct) = e T
: d
(3
2

P(0 correct) = 5 =0.3
;

Hence the expected percentage of candidates scoring on each node should
be 10, 60 and 30 repectively. The Monte Carlo approach, for which the
results are shown in Table 2, yields only scattered approximations to these
figures. In general (see Appendix 1) the probability of getting x correct
answers is given by:

r N-r
P( X ) X n—x
=X = _—
N
n
where N = number of choices

r = number of correct choices
n = number of selections made

x=0,1,... r

In appendix 1 we show that the number of correct answers selected in a
multiple response question (MRQ) follows a hypergeometric distribution with a
well-defined probability function, mean and variance. Armed with these results
the Mackenzie and O’Hare tables could be generated rigorously without resort
to Monte Carlo methods, but we can go further in analysing the question
scoring.
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MRQ Scoring Systems

An MRQ may use rigid or cumulative scoring. Rigid scoring only awards
marks for a fully correct answer. Cumulative scoring gives partial credit for
one or more correct answers. How can partial credit be awarded for answers
in view of the probabilities of guessing?

If we require MUGS = 0 then we show in Appendix 1 that the score for a
correct answer a must be related to the score b for an incorrect answer by
the equation

For example, in a MRQ(2/5,0) N=5,r=2. Ifwe seta=3thenb =-2.

The result is what you might expect. The score for correct choices is equal to
the number of incorrect choices and the score for incorrect choices is equal to
the negative of the number of correct choices. If a student selects all the
choices in an unconstrained MRQ, then the total score will, not surprisingly be
zero. It is noted that this result is independent of whether the MRQ is
constrained, partially constrained or unconstrained. To recap:

A cumulatively scored multiple choice question, whether constrained, partially
constrained or unconstrained, with N choices and r correct options has a
Mean Uneducated Guesser's Score of zero (MUGS=0) when the incorrect

i
answers are scored at 5 =( j of the correct answer score a.

N-r

The familiar result for an MCQ is simply the special case of r = 1, e.g. for a 4
choice MCQ a=3andb =-1. For a constrained MRQ(C2/5,0) a=3 and b =
-2. The resulting table of scores and probabilities is shown in Table 3

Number of Probability P Cumulative score S PS
correct choices
0 0.3 -4 -1.2
1 0.6 1 0.6
2 0.1 6 0.6

[IPS=MUGS =0
Table 3
Scores and Probabilities for a Constrained MRQ (2/5) with MUGS = 0 Scoring

Suppose we now examine the scoring pattern for an unconstrained
MRQ(U2/5), i.e. relaxing the condition for constrained selection, but still
adopting MUGS = 0 scoringof a=3 and b = -2.
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Number of 2 (or maximum) 1 correct 0 (or minimum) MUGS

selections  correct correct
0 - - 0(1) 0
1 3(0.4) - -2 (0.6) 0
2 6 (0.1) 1(0.6) -4 (0.3) 0
3 4 (0.3) -1(0.6) -6(0.1) 0
4 2 (0.6) - -3(0.4) 0
5 0(1) - - 0

Table 4

Scores (and Probabilities) for an Unconstrained MCQ (2/5) with MUGS = 0
Scoring

In Table 4 above the probabilities are shown in brackets. It can be seen that
the scoring pattern for 2 selections is necessarily the same as for a
constrained MRQ.

For 0 and 5 selections the score is necessarily zero. For other numbers of
selections an uneducated random guesser could “play the odds” and gamble
at high or low stakes just as for an MCQ. The beauty of using a MUGS = 0
scoring system is that a student knowing that the correct two answers were
among a set of three would get a guaranteed score of 4 out of 6 and gain
partial credit for selecting those three choices. A candidate able to eliminate
one choice would confidently select the other four and be guaranteed 2
marks.

The formula for the score variance is useful for determining how many
students will exceed a given score, e.g. a pass mark, by guessing and
enables the Mackenzie and O’Hare tables to be generated analytically.

Suppose, more generally, that a Mean Uneduated Guesser's Score MUGS =
C = 100c is required, where c is the MUGS score for the question expressed
as a percentage. Following the analysis of Appendix 1, the scoring system
must now be adapted so that a and b satisfy the equation

n(i)a + n(l—i)b=100c'
N N

In this way, negative scoring could be eliminated at the expense of a mean
uneducated guesser’s score greater than zero, e.g. by setting a>0and b = 0.
The variance of scores is determined from the same formula as given in
Appendix 1 and pass rates can be calculated accordingly.

It is noted that an MRQ (2/5) is assumed to be of the form: “Which two of the

following ...?”. A question of the type: “Which of the following ...?” simply
breaks down into 5 separate MCQ(1/2) questions.
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CAA question authors should seriously consider the use of unconstrained
MCQs and MRQs with intelligent scoring to get the benefits of partial credit
and expression of confidence levels. As a further illustration of partial credit
consider:

MRQ(C4/8)
probability of 4 correct by guessing = 1/70
probability of 3 correct by guessing = 16/70 ~1/4

MRQ(C5/10)
probability of 5 correct by guessing = 1/152
probability of 4 correct by guessing = 25/152 ~1/6

Rigid scoring would mark down those who did not get all the correct
selections. The chances of getting all-but-one of the correct selections by
guessing is quite small and some partial credit would seem appropriate.

Future Directions

The tables of Mackenzie and O’Hare (2002) could be generated in a
spreadsheet using mathematical formulae and thereby avoid the inaccuracies
introduced by Monte Carlo methods. Extensions to the tables can be made,
e.g. by allowing the specification of MUGS = 0 or MUGS > 0 to give the
appropriate scoring system. These would be useful in providing guidance on
“pre-processing” of marks by use of intelligent scoring systems, rather than
the more common post-processing.

Many other objective question types exist. The TRIADS CAA software
(Mackenzie, 1999) has around 50 different question types, ranging from
matching and ranking to extended matching items and drag and drop question
types. For example, suppose a ranking question expects the answer 12345
and a student answers 23145. A natural way of awarding partial credit would
be to consider the correlation coefficient as a measure of the answer
correctness.

This raises the common problem of non-integer scores, which can easily arise
in MRQs with the MUGS=0 scoring schemes. If multiplying factors are used
to make scores integer, the problem of variation in question scores occurs. If
software allows questions to be scored more flexibly, e.g. with non-integer
values, such problems could easily be resolved. For example, it should be
possible for a question author to specify the MUGS value and the maximum
score for an MRQ question, without having to specify the scores for each
choice.

Finally, we have considered the distribution of scores arising from a single
MCQ or MRQ only. If several MRQ questions of the same type are delivered
the total scores will follow a multivariate hypergeometric distribution, which is
necessarily more complicated. If a mixture of question types are used the
situation becomes more complicated still. It may be at this stage that
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computer simulations rather than a mathematical analysis becomes
prefererable.

Conclusions

Unconstrained or partially constrained MCQs are rarely used, yet they have
the advantages of offering partial credit and an expression of confidence in
the correct answer. In these circumstances negative marking is more
acceptable and post-processing of marks to allow for guessing is not required.

MRQs may be delivered in constrained, partially constrained or unconstrained
mode. Their scoring can be rigid (all or nothing) or flexible (cumulative).
MRQs and MCQs can be designed to give a pre-specified Mean Uneducated
Guesser’s Score by setting appropriate scores for the correct and incorrect
choices. The benefits of partial credit and confidence levels can therefore be
achieved for both MCQs and MRQs. The score distribution resulting from
guessing can be used to provide base pass rates

A more general conclusion is that considerable effort has been expended by
mathematicians in developing and implementing CAA of mathematics and
less effort has been put into the mathematics of CAA itself. The work
described here illustrates one application of mathematics to scoring. While
the use of computers may ultimately be necessary in calculating results, it is
believed that rigorous mathematics rather than computer simulations should
be used whenever possible.
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Appendix 1
Application of the Hypergeometric Distribution
to Multiple Choice and Multiple Response Questions

Consider a population of N possible answers to a question.

A known number, r where 0 < r < N, of the answers are correct (T) while the
remaining n-r answers are incorrect (F).

TTT ... TTFFF ... FF

< > <« |
r N-r

A random sample of n answers, where 1 < n < N, are selected at random
from the population without replacement. The number of correct answers in
the sample is a random variable X having the hypergeometric distribution that
has a probability function

x=0,1,... r

it can be shown that

-3
oo -5

Assume that each correct answer in the sample is awarded ‘a’ marks and
each incorrect answer is awarded ‘b’ marks then the total marks for the
question is a random variable T given by

and

T

aX + b(n-X)

(a—b)X + bn
It follows that
E[T]=(a -b)E[X] + bn

E[T] =(a —b)r(%J + bn
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E[T] =n(ija + n(l—ijb
N N

For E[ T] =0 we have

Note that the relationship between a and b is independent of the sample size
n, i.e. whether the MRQ is constrained, partially constrained or
unconstrained..

The variance of T is given by

V[T]=V[(a=b)X + bn]

=(a-b)* V[X]

Hence

- e

221





