STANDARDIZATION OF PHYSICS
EXERCISES: DYNAMICAL
GENERATION OF DATA

Joan Parellada

Standardization of Physics Exercises.
Dynamical Generation of Data.

J. Parellada
Facultat de Fisica
Universitat de Barcelona
Diagonal 645
08028 BARCELONA SPAIN

ABSTRACT

Problems are one the most commonly used methods in the study of physics;
thus computer-assisted tools to promote their use should be welcomed. To
make a problem reusable under different computer environments, its contents
must be structured in a standard way so that any code can understand it. The
structure and tags defined in IMS QTI specifications are used and new tags
are introduced to make the best of the tutoring capabilities of a problem.
Furthermore, in order to have better control of students’ activities, the
problem data should be made variable. The idea of a problem template is
introduced and a set of tags to dynamically generate the data is presented.

INTRODUCTION

Problems and exercises are normally presented to students in physics and
other scientific areas as a self-learning tool. It is accepted that just trying to
solve them is a good method to master the concepts involved in science,
concepts that have been normally explained previously in classrooms or
textbooks. Teachers and lecturers believe that the ability to solve an exercise
is strongly related to student knowledge, so exercises are often presented in
exams to grade the students.

The problems are usually corrected and graded by lecturers or tutors following
a lengthy process. All the assumptions, steps and calculations done by the
students have to be checked and understood by the reviewer, looking for
misunderstandings and/or mistakes. Although quite often the whole
development leads to a final result, sometimes a number, it is not good
teaching practice just to check this number to assess all of the work done by
the student; a small error in a calculation is not the same as a critical
misunderstanding of a concept. On the other hand, if the final result is correct,
one can assume development to be right; normally a series of mistakes never
compensates errors to give the correct value.

For all these reasons, except in non-trivial exercises, it is difficult to automate
the correction process. It could be done if the whole exercise is split into small
steps with some sequencing. Unfortunately if fixed sequencing is used, the
pathway can also be seen as a hint on how to proceed. Adaptive sequencing
can solve this shortcoming, but it is much more difficult to implement.

303

There is an important point to be raised in Latin cultures, which may not be
strictly true in more Anglo-Saxon environments. It has to do with the need to
strictly follow the activities of the students and a false concept of solidarity
among them. One can imagine making it mandatory to try to solve a problem
and to record student’s activities, but in distance learning it is too easy for
students to pass information to each other and to cheat that student overall
activity can not be trusted. If each one of the students were presented with
their own exercise, or at least with different data, it is expected that personal
work to get the numerical answer can be ensured, because no student will
want to repeat calculations just so they can be passed to his or her fellow
students.

More specific details have also to be considered when dealing with problems
or exercises in physics. Numerical results should take into account accuracy
and precision issues. Although Merriam-Webster (2003) defines them in a
very similar way, actually to be synonymous, they are different concepts
which lead to considerable confusion among students. Accuracy is related to
the correctness of the result; normally different numerical calculations lead to
different results because of rounding errors, and should be taken into account
given an upper and a lower limit for a correct value. Precision is related to
how exactly the value is computed, the number of significant digits given in
the result is an indication of the precision.

Another issue has to do with the fact than normally a result is not just a
number, but a physical magnitude, which means a number plus the unit
qualifying it. Thus there are different ways to write the same result; a different
figure corresponding to a different unit. Once more, it does not seem to be
good teaching practice to ask the student to use a particular unit; normally
there is a more adequate one, and being able to find it is also part of the
problem, and an intrinsic process in learning physics.

:Ete";'; A PHP and MySql computer code
<title>Problema Mecanica 01_01F_01_EN</title> has been developed to present
I</head>
<body bgcolor="#FFFFFF" text="#000000"> physics exercises following t.h 1S
<2php approach. Dynamical generation
include ("c:web_exemples\problemes\php\comu1.php"); of numerical application and

$units = array("hours", "km", "m", "miles", "yards", "lux"); . .
$conversion = array(array("na",0), array(1,0), array(1000,0), mathematical formulation of the

array(0.6213881812968,0) ,array(1093.61329833771,0), solution |S programmed_ Unrts
array("na",0));

$speed = number_format(doubleval(rand(20,100)),0); and precision issues are taken
$time = number_format(doubleval(rand(10,120)),0); into account. Hints can be
$precision = min(precision($speed), precision($time))+1; . .

$answer = $speed*$time/60; supplied, and a particular

$enunciat = "A car runs at $speed km/h. What distance will it sequencing and pace for the
travel in $time minutes?";

$pregunta = "The distance is "; problem set can be dynamically

hhint = array (array("text","Recall that distance equals speed generated for each individual
times time",0), array("text","Have you changed the minutes

to hours, dividing by 607",0));

A include ("c:web_exemples\problemes\php\comu2.php"); To write down a full exercise this
-> - -

/body> way is quite a complex procedure.
</html> First, text has to written; then

Fig 1.- PHP computer code range and/or values of data and

their presentation have to be analyzed to avoid mathematical singularity

304

computations or physically nonsensical results; later on, the mathematical
expressions leading to the final results have to be correctly coded;
furthermore, hints have to be prepared in relation to foreseen wrong answers.

As is seen, each problem is a PHP file, with all the exercise characteristics
defined as computer variables placed between two include sentences, they
call other files containing all the logic. In any case, there is a very close
binding between the code and the problems. To be efficient, exercises can not
just be “variables” closely related to a computer code, they would have to be
rewritten every time changes in the code are made or could not be used at all
in any other program. Our whole goal is to consider a problem as a “learning
object” (LO) as defined by D.A.Wiley (Wiley 2002) “any digital resource that
can be reused to support learning”.

META-DATA

In this paper we propose a meta-information dataset related to problems in
physics in general. This information deals with classification, authoring and
versioning, common to any LO, to a more specific approach for problems or
exercises.

The first set is clear; there has been substantial work already done on digital
content, in general, and learning material, in particular. Dublin Core (DC
2003), IEEE/LTSC (IEEE 2002) and IMS LOM (IMS 2001), but there is still
much to do: the tag set has to be increased, for example, to include some
information on translations (CEN CWA 14645 2003), and controlled
vocabularies should be established and maintained for many subjects,
education and physics in particular (CEN/ISSS Draft CWA 2003).

The specific tag set for problems has already been worked by IMS in
Question & Test Interoperability (QTI) specifications (IMS/QTI 2002) although
it is not well adapted to our requirements. The main objectives required by
QTI are already explained in its vocabulary. The specifications define
Assessment, Section and Item. It should be clear then that the main objective
of QTI specifications is interoperability among tests (equivalent to
assessments) made up of questions (equivalent to items) that can be grouped
or not in sections. In our vocabulary, we have a problem or exercise which
normally has a general statement followed by one or more ordered questions;
each one could have just one clause or more (basic or composite response
type in QTI notation). The student should supply the answer(s) to the
question, normally via the submit/enter function, and the given values are
checked against known ones. The sequencing rules will determine the next
question (item in QTI nomenclature) to be presented. For coherence with IMS
QTI specifications, our problem will be a section containing a set of items.
Normally the questions will be closely related to the main statement of the
problem and that will set down the granularity at a section level.

305

PROPOSED NEW RESPONSE TYPES

The main presentation elements defined in QTI are related to defining the
question type, how it is rendered and how the answer is to be given. The
basic answers defined are: Logical Identifier, XY co-ordinate, string, numerical
and logical group, and each one of them can have different ways of being
presented. String and numerical groups are what they mean; a logical
identifier is related to choices from a set of values and a logical group is used
to provide relations between different sets of values, for example using drag
and drop. With XY co-ordinates, HTML image maps can be used as
presentation material and an area or point is chosen in the student’s answer.

In physics we can use all these different ways to present questions; actually a
quite simple astronomy problem is the example that QTI presents for the
logical group; to name and order all the planets of our solar system. This
means that rendering a specific QTI-defined element will always be the same
and coherent with the specifications. Rendering will be mainly determined by
the processing code using the XML file as data. As an example, if choices are
to be presented as radio button or a checkbox, depending on whether only
one or more than one answer is expected, then the select element allowing
the student to choose from a scrolled list will never appear.

Probably the most typical answer in physics | EEmmrEmre
problems would be a number with physical | “%° = = S s 8
units. Although this response could be | — ===
obtained using a composite item with a || '

numerical field plus a single choice, for
different reasons it seems appropriate to
introduce a new response type. The answer
should give a numerical quantity, the unit
and the precision, if it has to be considered,
thus leading to three response labels.
Furthermore, there is a presentation
problem because while the numerical
response will normally be rendered by one
input box, fill in a blank (FIB) in QTI
nomenclature, the unit is a choice normally
presented as a radio button field. Although
pedagogically correct, it is an ugly way to
write the result, essentially because if it

7
A car runs at 65 km/h. What distance will it travel in 50
minutes?

i
A car runs at 65 km/h. What distance will it travel in 50
minutes?

The distance I— © km ¢ miles C hours
is: = m © oyards O lux

were presented as a box followed by a Fig 2.- Rendering
select field with size one, it would look much more normal.

If the author does not wish to give any hint on the units to be used, one or two

FIB fields can also be utilized. The processing code will then have to analyze
the input to find the corresponding unit, which is more prone to errors.

306

In composite items it is expected that each one of the entered values should
be checked against those given. In our case, there is a unit transformation
factor that relates the figure with the unit, the same result could be written in
different ways; for example 1000mm = 100cm = 1m = 0.001km. Then, either
equivalent values are given in the response processing section, or the student
response is transformed by the code. Factors should be given as data to
change the answer to the same unit used by the author, and later both
numerical values are directly compared. It could be worthwhile to offer a unit
name that is not applicable for the desired solution. it should be decided how
to mark these units, a factor “0” or a “NA” attribute, setting a pass/fail flag in
processing the answer, or just passing all the possibilities to the response
analysis. \We shall take the last case as an example.

A new response type to take into
account all these details is
presented, its XML representation
is shown and an example offered.
The three simultaneous answers

response_physmag -~ - expected as input from the student
are differentiated by the attribute
osponse jabe | ident of the <response_label> tag.

.................

Its value can reasonably be set to
value, wunit, and precision. If
precision is not to be analyzed,
then just do not write the corresponding <response_label> tag.

Fig 3.- Schema for <response_physmag>

Kitem ident="s=vt">

THE RESPONSE ANALYSIS

The <resprocessing> tag has to be
used to analyze the answer given by
the student, essentially the
<respcondition> sub-element that
should appear one or more times
inside it. To analyze an answer given
by a number and a unit, both will
have to be checked, and it is up to
the author to make one of them
exclusive using the continue attribute
in <respcondition>. It will also be
the time to check for precision, either
by giving a positive integer, meaning
the maximum number of digits the
answer can take, or using a default

<presentation>

<material> A car runs at 65 km/h. What distance will it
travel in 50 minutes </material>

<response_physmag ident="distance">

<show>
<units shuffle="yes">
<unit name="km" factor="1.0" shift=0.0"/>
<unit name="m" factor="1000." shift=0.0"/>
<unit name="miles" factor="0.6213881812968"/>
<unit name="yards" factor="1093.61329833771"/>
<unit name="hours" factor="0.0" shift=0.0"/>
<unit name="lux" factor="0.0" shift=0.0"/>
<units/>
<show/>

<response/>

<response_label ident="unit"/>

<response_label ident="value"/>

<response_label ident="precision"/>

<presentation/>
<item/>

Fig 4.- XML Instance exercise

value obtained from the data used in the calculation.

As an example, the instance to analyze the example above is presented.

307

<resprocessing> </respcondition>
<respcondition title="Correct" > <respcondition continue="No" title=" high_precision" >
<conditionvar> <conditionvar>
<and> <vargt respident="precision">4</varequal>
<or> </conditionvar>
<varequal respident="unit">km</varequal> <displayfeedback feedbacktype="Hint" linkrefid="h_p"/>
<varequal respident="unit">m</varequal> </respcondition>
<varequal respident="unit">miles</varequal> <respcondition continue="No" title="value_error" >
<varequal respident="unit">yards</varequal> <conditionvar>
<or> <or>
<varequal respident="precision">4</varequal> <varlt respident="value"> 54.1 </varequal>
<varlte respident="value">54.2</varequal> <vargt respident="value">54.2 </varequal>
<vargte respident="value">54.1</varequal> <or>
</and> </conditionvar>
</conditionvar> <displayfeedback feedbacktype="Hint" linkrefid="v_err"/>
<displayfeedback feedbacktype="Response" linkrefid= | </respcondition>
"correct"/> </resprocessing>
</respcondition> <itemfeedback ident="u_err">
<respcondition continue="No" title="units_error" > <material> Wrong units </material>
<conditionvar> </itemfeedback>
<or> <itemfeedback ident="_p">
<varequal respident="unit">hours</varequal> <material> Please, write more digits </material>
<varequal respident="unit">lux</varequal> </itemfeedback>
<or> <itemfeedback ident="h_p">
</conditionvar> <material> Too many digits!!! </material>
<displayfeedback feedbacktype="Hint'|</itemfeedback>
linkrefid="u_err"/> <itemfeedback ident="v_err">
</respcondition> <material> Wrong numerical answer!. </material>
<respcondition continue="No" title=" low_precision"> </itemfeedback>
<conditionvar> <itemfeedback ident="correct">
<varlt respident="precision">4</varequal> <material> Congratulations, right answer!!! </material>
</conditionvar> </itemfeedback>
<displayfeedback feedbacktype="Hint" linkrefid="I_p"/>

Fig 5.- XML instance <respcondition>

QTI specifications allow feedback information to be assigned to each
<responcondition> tag. This information is presented to the student if the
condition result is true. A message congratulating the student can be sent if
the correct value is introduced or, on the other hand, hints can be presented
to help him or her to keep trying to solve the question. Typical errors can also
be checked and more specific hints can be given for each one.

It is sometimes reasonable to present the student who has not answered a
question correctly with another one, simpler and easier. In our example, a
typical mistake could be just to forget to express the time in hours before it is
multiplied by velocity. In this case presenting an auxiliary question, “how many
hours correspond to 50 minutes?”, could help the student to understand and
solve the problem. IMS QTI has recently issued specifications for Selection
and Ordering (IMS/QTI-SO 2002), but the user case we wish to include is still
being studied. Probably in the future, complete, deep relations could be
established between questions and answers; in the meantime our proposal
will be to add a new sub-element into <responcondition> to jump to a
specified item. This can be done in a similar way to how the feedback is
presented, it is mandatory that each of the items has a unique ident attribute,
and to make it simple the proposed <jump> element should only have a
linkrefid whose value corresponds to the next item to be presented.

THE META-PROBLEM

In QTI specifications there is no feature for having variable data and/or text in
the material element of assessment, sections or items. This means that the
XML instance fully determines the rendering of the material and the evaluation

308

of answers without any other process. As said in the introduction, one of our
goals was to be able to generate different numerical applications, which lead
to different results, in the same problem; this is the concept of a problem
template.

Two different approaches can be used to work out development. In one, all
the information is placed in the same XML instance and processed by the
same code. First, it should hold all the data on how to define and assign
values to the variables, later followed by QTl-style structure. In the second
part, the variable elements should be defined inside a XML Processing
Instruction Pl, which we can call replace, to let the code know that its
targetname is just the name of a previously defined and assigned variable.
The variable value has to be placed in the precise position where the Pl is
located. How the code does this replacement is not defined here.

<mattext> i H :
A car runs at <?replace v ?>km/h. What distance ThIS approaCh 1S I"!Ot the. best prappce
will it travel in <?replace t ?> minutes? in XML, where Pl is not in the spirit of
</mattext> generalized markup, and is not

FIG 6.-Pl instruction use recommended in IMS specifications,

where mixed content elements are not allowed.

The second approach is modular. Normally, in a QTI instance, all problem
statements and results are just PCDATA within some elements. Our proposal
for a QTl-style problem template just adds two new elements to split this data
into a fixed part and a variable part. The fixed element <fix>...</fix> will again
hold data and the variable element <var>...</var> will just name the variable
defined elsewhere.

To proceed, first all information related to names and values of variables has
to be given. We can use an XML instance, but one that is not related to QTI,
or any other data file as input to a computer code. The output is a listing with
the variable names and its associated value. Next, the XML file defining the
problem template is parsed and transformed, the use of XSLT will probably
represent an overkill, tags <fix> and </fix> are removed and the character set
<var>var_name<Ivar> is replaced by the var_name value from the listing
defined previously. The file obtained from the transformation will be a regular
QTI file that could treated by any code following QTI specifications.

<mattext>
<fix>A car runs at <ffix><var> v</var><fix> km/h. WWhat distance The prObIem template ShOUId
will it travel in <ffix><var> t</var><fix>minutes?</fix> be cataloged as a regular LO,
</mattext> - within a package in IMS
V= .
t=50 nomenclature, which needs an
<mattext> _ - _ _ auxiliary file containing the
A car runs at 65 km/h. What distance will it travel in 50 minutes? . . .
</mattext> information related to variable
Fig 7.- Substitution procedure generation. It should be up to

the Learning Managing System code to generate the QTI instance on the go,
for each request, or to build and store a set of XML files to be presented to
different students.

309

A XML BINDING FOR VARIABLE DEFINITION

A distinction has to be made between the generation of data and the
computation of results, both are variables that have to be defined; the first
could have a random process, while the second is fully deterministic. There
will be then two main elements, <var_gen> to generate data and <var_com>
to compute results.

There could sometimes be a need to randomize no numerical data, pure text
or units, associated with numerical data. The <var_gen> element should have
sub-elements named <option>, with an attribute called weight. Inside
<option> all the variables should be defined, but only set will be chosen,
using the attribute as a weight.

Within <option>, we can have <var_text> elements defining the name of the
variable and its value. We shall consider three different kinds of numerical
variables: Single, which is just a single number, defined from a given value, or
sampled from a list, or randomly generated from a set of intervals, or obtained
from a mathematical computation of previously defined variables. We can also
define Related variables, a set of variables which are sampled from a list in a
correlated way, the i-th element of each list is assigned to its variable name.
Finally, we can have just one Multiple variable, a variable name assigned to a
set of values, an array in computer language, obtained either from a matrix or
from a computation.

A <var_cal> sub-element, containing only a mathematical computation, must
also be included in <option> to make data uniform among options.

Each of these elements must have an attribute defining how the number has
to be stored in memory, as an integer or float or double precision, and a sub-
element defining how to write it, as an integer, decimal or in scientific notation,
giving information on the number of total digits and the number of decimals. A
prevision to download a file should be included in a multiple variable.

In the <var_com> element we can only have <var_cal> sub-elements
containing the variable name, the mathematical expression defining them and
information on their representation. Different approaches are being
considered for mathematical computations. Fully reusable MathML sentences
can be used, but the code using the instance has to be able to understand the
language. The easiest approach, at least for simple calculations, can be
implemented using a Pl instruction <? eval expression?>; almost all
languages have an eval sentence and an easy way to write simple
mathematical expressions. For more complex calculations, CDATA can be
used to pass the code to the program; to make this approach reusable, the
CDATA should be placed within a container with the name of the language
used and various containers can be placed in the instance.

310

The XML instance to randomize our example is listed. The XML schema
definition can be requested from the author.

<var_gen>
<option name="car" weight="5">
<var_text name="text"> A car runs at </var_text>
<var_text name="speed_unit"> km/h </var_text>
<var_text name="time"> minutes </var_text>
<var_num_single name = "v" type = "int">
<random>
<interval>
<value> <cte>70</cte> </value>
<value> <cte>95</cte> </value>
</interval>
</random>
<presentation type="int">
<digits>2</digits>
</presentation>
</var_num_single>
<var_num_single name = "t" type = "int">
<list> 40,45,50,55,65 </list>
</var_num_single>
<presentation type="int">
<digits>2</digits>
</presentation>
<var_cal name="v_ana" type = "float">
<?eval $v_ana=$v?>
</var_cal>
<var_cal name="t_ana" type = "float">
<?eval $t_ana=$t/607>
</var_cal>
</option>
<option name="plane" weight="3">
<var_text name="text"> A plane flights at </var_text>
<var_text name="speed_unit"> miles/h </var_text>
<var_text name="time"> minutes </var_text>
<var_num_single name = "v" type = "int">
<random>
<interval>
<value> <cte>500</cte> </value>
<value> <cte>600</cte> </value>
</interval>
</random>
<presentation type="int">
<digits>3</digits>
</presentation>
</var_num_single>
<var_num_single name = "t" type = "int">
<list> 55,65,85</list>
</var_num_single>
<presentation type="int">
<digits>2</digits>
</presentation>

<var_cal name="v_ana" type = "float">
<?eval $v_ana=1.6093*$v?>
</var_cal>
<var_cal name="t_ana" type = "float">
<?eval $t_ana=$t/60?>
</var_cal>
</option>
<option name="snail" weight="2">
<var_text name="text"> A snail creeps at </var_text>
<var_text name="speed_unit"> cm/minute
</var_text>
<var_text name="time"> hours </var_text>
<var_num_single name = "v" type = "int" >
<random>
<interval>
<value> <cte>9</cte> </value>
<value> <cte>18</cte> </value>
</interval>
</random>
<presentation type="int">
<digits>2</digits>
</presentation>
</var_num_single>
<var_num_single name = "t" type = "float">
<list> 0.6, 0.8, 1.2 </list>
</var_num_single>
<presentation type="dec">
<digits>2</digits><dec>1</dec>
</presentation>
<var_cal name="v_ana" type = "float">
<?eval $v_ana=6*$v/100007>
</var_cal>
<var_cal name="t_ana" type = "float">
<?eval $t_ana=$t?>
</var_cal>
</option>
</var_gen>
<var_com>
<var_cal name="dis_correct" type = "float">
<?eval $dis_correct=%v_ana*$t_ana?>
</var_cal>
<var_cal name="dis_wrong1" type = "float">
<?eval $dis_wrong1=$v_ana*$t?>
</var_cal>
<var_cal name="dis_wrong2" type = "float">
<?eval $dis_wrong2=$v*$t_ana?>
</var_cal>
<var_cal name="dis_wrong3" type = "float">
<?eval $dis_wrong3=$v*$t?>
</var_cal>
</var_com>

Fig 8.- Variable data definition

311

FUTURE WORK

To check the suitability of the proposed structure, a small set of problems
from different subjects in physics is being built by specialists. Probably new
response types will be needed, a few of them have already been suggested:
symbolic mathematical expression, vector analysis, universal unit definition
and transformation files, ...

The PHP code is already being adapted to use XML instances using SAX
libraries, although DOM could be more suitable.

An authoring program to lead and help authors in writing the XML file is also
planned.

REFERENCES

CEN/ISSS CWA 14645 (2003) Availability of alternative language versions of
a learning resource in IEEE LOM
<http://www.cenorm.be/isss/cwa_download_area/cwa14645.pdf>

CEN/ISSS (2003)
Draft CWA Controlled Vocabularies for Learning Object Metadata
<http://office.eun.org/kms/sites/cenisss/TaxVVocReport_1_3.zip>

Dublin Core Metadata Element Set, Version 1.1: Reference Description
(2003) <http://dublincore.org/documents/dces>

IEEE 1484.12.1-2002 Final Draft Standard for Learning Object Metadata
(2002)
<http://ltsc.ieee.org/doc/wg12/LOM_1484 12 _1_v1_Final_Darft.pdf>

IMS Learning Resource Meta-data XML Binding, Ver.1.2.1 (2001)

<http://www.imsglobal.org/metadata/imsmdv1p2p1/imsmd_bindv1p2p1.htm
>

IMS Question & Test Interoperability: ASI XML Binding, Ver.1.2 (2002)
<http://www.imsglobal.org/question/qtiv1p2/imsqti_asi_bindv1p2.html>

IMS Question & Test Interoperability: ASI Selection & Ordering, Ver.1.2
(2002)
<http:// www.imsglobal.org/question/qtiv1p2/imsqti_asi_saov1p2.html>

Merriam-Webster On Line
<http://www.m-w.com/home.htm>

Wiley D.A. (2002) Connecting learning Objects to instructional design theory:
A definition, a metaphor, and a taxonomy in The Instructional Use of
Learning Objects
<http://reusability.org/read/>

312

