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Abstract 

Diagrams are an important part of many assessments. When diagrams 
consisting of boxes joined by connectors are drawn on a computer, the 
resulting structures can be matched against each other to determine 
similarity. This paper discusses ways of doing such matching, and its 
application in the context of human-computer collaborative assessment. 
Results show that a simple heuristic process is effective in finding similarities 
in such diagrams. The practical usefulness of this varies in different contexts, 
as students often produce remarkably dissimilar diagrams. 

Introduction 

The Assess By Computer (ABC) project (formerly Assess By Wire) [1] follows 
a human-computer collaborative (HCC) approach to assessment. We focus 
on constructed answers such as text and diagrams rather than answers 
requiring mere selection between alternatives. The HCC assessment process 
is an active collaboration between humans and a software system, where the 
software does the routine work and the humans make the important 
judgements. 

In this paper we focus on technology to support HCC marking of diagrams. 
The basic idea is that many types of diagrams (e.g. UML class diagrams, 
entity-relationship diagrams, chemical molecules, electronic circuits) can be 
represented as boxes joined by connectors in a structure known in Computer 
Science as a graph. Graphs can be matched against each other for similarity, 
and the results used in various ways. This idea was invented independently 
by groups at the Open University [2] and the University of Nottingham [3], as 
well as at Manchester.  

In our context we do not expect to use the results for fully automatic 
summative marking.  The aim is to present the information efficiently to the 
human marker, filter out diagrams which really are identical, and improve the 
speed and quality of the marking process significantly. We have already 
shown that a similar approach works well for free text, even without applying 
Natural Language Engineering techniques, although use of such techniques is 
being investigated [8]. There are also interesting formative applications. 



In the following section we explain how students draw diagrams and how 
diagram questions are set up. Then we discuss the application of classical 
graph theory, particularly graph isomorphism, to the problem. The limitations 
of this approach lead to the development of a simple heuristic method which 
is shown to be very effective. In the HCC context, user interface issues are 
important, and we discuss these. Finally we outline the current directions of 
the work and draw some conclusions. 

Diagram drawing tools 

The ABC system includes a tool to support the drawing of diagrams. The tool 
consists of a palette and a drawing area. Students can select boxes from the 
palette, place them anywhere on the drawing area and use connectors to join 
them. Both boxes and connectors can be labelled, using both standard 
keyboard characters and a range of additional ones. 

Figure 1. The diagram editor 

The diagram type is independent of the system's infrastructure and treated in 
a uniform manner by it. The palette is fully customisable during examination 
setting, depending on the kind of diagram the answer is expected to be.  
Students may therefore be presented with only the components necessary for 



the domain of the answer, or otherwise, at the examiner's discretion. Figure 2 
shows that a much wider range of components is available to the exam setter 
than would normally be presented to the student. 

Figure 2. The palette builder 

The ABC system uses XML to store structured answers. The XML description 
corresponds to Java data structures. When the matching tool is run, it initially 
creates Graph objects for each of the diagrams under consideration, 
consisting of boxes and connectors. A Graph object can be created out of any 
kind of box and connector combination, without any knowledge of the domain 
the diagram belongs to.  

Matching by graph isomorphism 

In classical graph theory, a [simple] graph is defined as “a set of vertices and 
a set of edges that connect pairs of distinct vertices (with at most one edge 
connecting any pair of vertices)” [5, p.7]. Hence our boxes are vertices and 
our connectors are edges. The creation of internal Graph objects enables the 
execution of standard graph theory operations and algorithms. 



The use of such algorithms was investigated and the use of isomorphism in 
particular seemed a plausible approach: “Two graphs are isomorphic if we 
can change the vertex labels on one to make its set of edges identical to the 
other.” [5, p.10]. In this context, a correct answer would most likely be 
isomorphic to, or at least contain an isomorphic subgraph of, a model answer.  

Code was implemented to test whether two graph objects are isomorphic. If 
they are, a list of matches of corresponding vertices is returned. If they are not 
isomorphic, the aim is to identify one of the graphs' maximal isomorphic 
subgraphs, the vertices of which, when renamed appropriately, would be 
connected by the largest set of edges in the other graph. In this case, along 
with the matching vertices, the percentage of the number of edges in the 
maximal edge set, over the total number of edges is returned. The program 
can handle both undirected and directed graphs (digraphs); in the latter case 
the edges have a specified direction. The algorithm requires that all of the 
graph's vertices lie within the same connected component, that is, there is a 
path from every vertex to every other vertex in the graph. Figure 3 shows two 
small isomorphic digraphs. 

Figure 3. Two isomorphic digraphs 

The program recognises that the graphs are isomorphic, and produces a list 
of the relabellings required. For instance in the example the nodes labelled 
1,3, 7 and 8 in the first graph need to be relabelled to 7, 8, 1 and 3 
respectively. 

The algorithm is recursive, and keeps running until either an isomorphism is 
found or all possible recursive calls (within the available time and space) are 
made. In the latter case, the maximal isomorphic subgraphs (the largest pair 
of  subgraphs within the two graphs which are isomorphic) are returned.   

This implementation proved to work well even for large, artificial, example 
graphs (1000 vertices, 100,000 edges for isomorphic graphs and 500 vertices, 
5,000 edges for maximal isomorphic subgraph matching). Despite the fact 
that the isomorphism problem is in principle computationally expensive [5, 
p.10], in practice the cost is negligible for the size of graphs expected in 
assessments. 



However, isomorphism alone is neither necessary nor sufficient for the 
purpose of diagram matching in examinations. Diagrams are not only graphs: 
the information to be considered is much richer and components are 
associated with various individual properties. Such properties include the 
structure of the diagram's components, their types and labels. Even if two 
graphs are isomorphic they may be completely different in terms of these 
characteristics. However, the option of using isomorphism in combination with 
the heuristics described in the next section is being considered. 

A heuristic approach  

The method currently being investigated involves the creation of Local Metric 
(LM) objects for every box of every graph. An LM object contains information 
such as the type of the box, its degree (number of incident connectors) and its 
label, the number and types of adjacent boxes and the number and types of 
incident connectors. The type of a component represents notionally what it is 
used for within the diagram's domain (e.g. entity, attribute, relation, class, 
molecule, transition, bond) and visually how it is drawn (frames/line for boxes, 
end styles/line for connectors). Programmatically however, it is nothing more 
than a unique string, depending in no way on the diagram's domain. 
Additionally, an LM object implements methods to accommodate the 
comparison of its properties to those of another box. Based on such 
comparisons a score can be generated, expressing the percentage of 
similarity between the two boxes. 

The matching mechanism makes use of these scoring methods and attempts 
to match every box of a diagram to a box of another diagram. Only the 
currently unassigned boxes are taken into consideration, so no box is 
matched to more than one other. Based on the individual box scores, a total 
score expressing the similarity of the diagrams is calculated. The example in 
figure 5, based on a 2nd year Computer Science paper examination on 
databases, illustrates the matching process.  

The diagrams show entities (boxes) with attributes (ovals) and relationships 
(diamonds) and are known as entity-relationship (E-R) diagrams. The two 
diagrams shown in Figure 5 are similar, but they also have some basic 
differences. The idea is to compare every box in the first diagram against 
every box in the second that has not been already assigned to a box in the 
former, and generate a score. Of all the scores calculated, the highest one 
would suggest a match. 



Figure 5. Diagrams to be matched  

When comparing two boxes, partial scores are calculated to express their 
similarity, considering one of their properties at a time. The total score is the 
weighted average of all the partial scores. Table 1 summarises the currently 
available weighted metrics along with the methods used to generate the 
partial scores. More such metrics are likely to be added in the future, as the 
project progresses. The calculations for the metrics are given informally, as 
the details are rather complicated in some cases, and subject to change 
anyway. 

The desire to be able to determine, automatically and dynamically, what 
weight values will produce the maximum (or minimum, depending on the 
human marker's preference) possible score led to the recent introduction of a 
Weight Manager (WM). For every combination of the weights of each one of 
the metrics in the LM objects, the WM runs a series of tests comparing every 
(answer) graph against a model (if one is provided) or against every other 
graph. The average score produced is used to characterise that specific 
combination of weighted metrics. This way, the weights applied are 
determined on the fly, and may be different for each set of graphs, allowing for 
marking flexibility. One of the most obvious reasons to require varying weights 
is the fact that labels on boxes have a highly variable relevance in matching. 
Often they have a very strong influence, but for example there are cases 
where in an E-R diagram, multiple attributes of the same name exist. The 
diagrams in Figure 5, where two “name” attribute boxes exist in each of them, 
are a simple example. In such cases, it is desired that the other metrics have 
more weight, in order to distinguish among instances. 

 
 
 
 
 
 
 
 



Metric Description Partial Score Calculation Method 

Degree Number of 
incident 
connectors (≥1) 

Return max score if the number is the same, 
otherwise 0. 

Type What this box 
represents 

Return max score if the type is the same, 
otherwise 0 

Adjacent 
Boxes 

The number of 
adjacent boxes 
and their types 

Return an averaged score based on the number 
of adjacent boxes which do and don’t have 
matching types. 

Incident 
Connectors 

The number of 
incident 
connectors and 
their types 

Return an averaged score based on the number 
of incident connectors which do and don’t 
have matching types. 

Label The label's 
string 

Return max score if the labels are 
identical, otherwise return a score based on 
the edit distance between the labels. Above 
a cutoff edit distance, return 0. 

Table 1. The weighted metrics 

As an example, the boxes labelled “buys” 
in the previously considered diagrams 
and their immediate surroundings, shown 
in Figure 6, are used. Their degrees and 
labels are the same, as are the number 
and types of the connected boxes, so 
these metrics give 100%. The types are 
different so this metric gives 0. One of the 
connectors matches, the others don’t, so 
the scoring heuristic gives these a 33% 
score. 

Figure 6. Boxes to be matched 
For this example, each metric is given a 

weight of either 1 or 4, giving a total of 31 combinations (“all 1s” and “all 4s” 
being equivalent), although metrics can easily be given any number of 
weights, thus producing a potentially much larger number of combinations. 
The results from 5 of these cases are shown in table 2. The cases are A: all 
weights the same; B and C the weights which give the maximum and 
minimums scores for whole diagram; D and E, the weights which give the 
maximum and minimum scores just for the “buys” box. 

 

 

 

 



Partial Scores (%) Total Scores (%) 
Case Degree Type Adj. Boxes Inc. Connectors Label Box Diagram

A 100.0 0.0 100.0 33.33 100.0 66.66 78.3

B 400.0 0.0 100.0 33.33 100.0 57.57 85.18

C 400.0 0.0 400.0 133.33 400.0 78.43 76.08

D 400.0 0.0 400.0 33.33 400.0 88.09        77.12

E 100.0 0.0 100.0 133.33 100.0       39.39 84.43

Table 2. Partial and total score test results 

Not surprisingly different weights give very different scores for the box. 
However, the variation over the whole graph is much less – between 76% and 
85%, This is typical for cases like this, and suggests that the process is 
robust: varying the weights does not drastically alter the results. Subjectively, 
a score of about 80% “seems about right” for these diagrams. However this 
does not mean that the second diagram should be marked as e.g. 8 out of 10: 
the human must make that judgement (at least in summative situations). 

User interfaces issues 

One of the system's requirements is that any differences or matches between 
two graphs should be presented to the user in a clear and useful manner. One 
aim is to minimise the time taken by, and the cognitive stress involved in, 
marking. Another is to give useful formative feedback to students 
automatically. Currently, boxes that have been matched between a model 
graph and any number of answer graphs (many-to-one matching) are 
highlighted with the same colour, as shown in Figure 7. This is very useful for 
research purposes; trials with real users will be necessary to determine 
whether this is a good presentation format in practice. Many-to-many 
matching is also supported, producing a sortable table of scores. Both types 
of matching can make use of the WM to determine on the fly the optimum 
weights of metrics. 

This screenshot demonstrates that although several differences do exist 
between the two graphs, their boxes are successfully matched. Another pair 
of diagrams depicting caffeine's chemical molecule (correctly in the second, 
almost correctly but with an extra triple-bonded carbon atom on the far right in 
the first) is shown in Figure 8. An interesting feature of the latter example is 
that there are identical sub-structures in different parts of the graph (an N 
bonded to three Cs, top right and bottom left). The localised nature of the 
matching process means that it is not guaranteed to match these “the right 
way round”, although in the example it does. This suggests that use of a 
global structure check such as isomorphism in combination with the local 
heuristics would improve the quality of information presented. 



 
Figure 7. Diagram matching in action 

 

Figure 8. Chemical diagrams being matched 



What students really draw 

Tests with real exam data produced some unexpected results, however. The 
real data is remarkably messy, in particular student’s answers are often not 
single connected graphs. Table 3 shows results from an online test where the 
students had to draw UML diagrams representing a particular pattern. The 
question constrained the answers much less than for the E-R diagrams. 

Out of the 20 students that attempted to answer the question, four of them 
produced diagrams which could not meaningfully be matched. Intermediate 
cases also exist where labels characterising a box are attached just above or 
below the box, and not in it. The system currently considers labelled boxes 
where the label is in the box, hence diagrams including boxes mislabelled as 
such received a low score.   

 Scores (%)  
Answers Using WM* Using WM** All 1s Human Std. Deviation*** 

Ans01 69.55 21.99 48.38 0 49.18 
Ans02 81.00 67.81 73.58 80 0.707 
Ans03 94.55 78.18 88.00 100 3.854 
Ans04 76.36 34.56 43.04 80 2.574 
Ans05 34.35 14.94 15.29 60 18.137 
Ans06 65.13 45.98 55.29 80 10.515 
Ans07 14.55 03.64 08.00 0 10.288 
Ans08 87.88 32.88 73.33 80 5.572 
Ans09 84.64 26.09 66.20 40 31.565 
Ans10 51.67 43.33 51.33 0 36.536 
Ans11 69.14 63.31 60.98 60 6.463 
Ans12 59.44 50.69 52.86 100 28.68 
Ans13 81.82 71.08 75.38 80 1.287 
Ans14 89.45 57.82 76.80 80 6.682 
Ans15 89.09 56.36 76.00 100 7.715 

      
Average 69.90 40.51 57.63 62.67 14.65 

 
*either 1s or 4s (32 combinations, 15x32=480 iterations), best case: degree = labels = connectors = 1, 
type = boxes = 4 
**either 1s or 4s (32 combinations, 15x32=480 iterations), worst case: labels = connectors = 4, degree 
= type = boxes = 1 
***Standard Deviation between human marker and WM* scores. 

Table 3. Real examination data results 

Nevertheless, there is a reasonable similarity between the system scores and 
the marks (which were out of 5, scaled to percentages here), although clearly 
not enough to contemplate automatic marking. 

The labels in some of the boxes were practically essays, and dealing with 
these sensibly is non-trivial. Simple heuristics were used here, but separate 
work on text similarity detection will need to be incorporated. 



Quite a few of the diagrams were awarded a low score by the system 
because of the components the student placed and their consideration by the 
system; for example, a “junction box” is practically transparent to the human 
marker and only serves as a hook for connectors to be drawn forming angles. 
However, the system currently considers it like any other box, and the addition 
of an extra box in a graph of four or five makes a significant difference. 

Generally, the diagrams considered for this trial were structurally very simple 
allowing for unrestricted matching (in most diagrams including the model, 
three out of four or four out of five boxes were of degree 1) and accurate 
matching is largely dependant on the box labels, the matching of which is not 
supported optimally yet. However, both the arithmetic and the visual results of 
figure 8 show that the system extracts useful information, although there is 
clearly space for improvement. 

 
Figure 8. UML diagram matching 

Related work 

The DEAP system [2] comprises a drawing tool able to handle boxes, 
connectors and associated text, and encode them into text for storage. The 
text can be used to reconstruct the diagram, or identify its minimal meaningful 
units (MMUs), which are then combined into higher level features and 
compared against those of a model diagram; a grade is eventually awarded 
based on their similarity. However, domain knowledge is required for this kind 
of interpretation: “The identification stage uses domain knowledge to identify 
what we have called minimal meaningful units (MMUs).” [6]. Additionally, 
there is currently no way of expressing any kind of feedback visually, that is 
non textually.  



The DATsys system [3] provides a diagrammatic framework to CourseMarker 
[4]. Research is currently being carried out to extend its capabilities into 
automatic marking. Early work is described in [9], but, probably because of 
the system being a commercial product, little current information is publicly 
available. 

Conclusions and further work 

We have shown that a fairly simple heuristic approach to graph matching can 
detect the similarities between diagrams effectively. One concern is that it 
may “over-match” – show matches which are not actually valid. So long as the 
purpose is only to provide input to the human marker, this is not a major 
problem, but it can in any case be solved by combining the local heuristic 
method with a global structural check (e.g. isomorphism) and by providing 
additional information for special cases (e.g. non-commutative operators in 
parse trees). 

The work will be extended in a number of ways. For instance we will 
investigate combinations of local heuristics and global structure checking, as 
mentioned above, and incorporate better text matching for labels. For 
diagrams where spatial relationships are important, and to handle 
disconnected diagrams, we will probably introduce “pseudo connectors” which 
represent “near to”, “on top of” etc. In the longer term, we plan to investigate 
ways to deal with hand-drawn input. For instance university-level chemistry 
diagrams are typically much more complicated than the example above, and 
are very fiddly to draw with a mouse, so use of a drawing tablet is indicated.  

A common theme in all our work is that real student data often contains 
unexpected complications, and diagrams are no exception. Overall however, 
we regard the results to date as encouraging. 
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