
DIAGRAM MATCHING FOR
HUMAN-COMPUTER

COLLABORATIVE ASSESSMENT

Christos Tselonis, John Sargeant,
& Mary McGee Wood

Diagram Matching for Human-Computer
Collaborative Assessment

Christos Tselonis, John Sargeant & Mary McGee Wood
School of Computer Science, University of Manchester

{tselonic, johns, mary}@cs.man.ac.uk

Abstract

Diagrams are an important part of many assessments. When diagrams
consisting of boxes joined by connectors are drawn on a computer, the
resulting structures can be matched against each other to determine
similarity. This paper discusses ways of doing such matching, and its
application in the context of human-computer collaborative assessment.
Results show that a simple heuristic process is effective in finding similarities
in such diagrams. The practical usefulness of this varies in different contexts,
as students often produce remarkably dissimilar diagrams.

Introduction

The Assess By Computer (ABC) project (formerly Assess By Wire) [1] follows
a human-computer collaborative (HCC) approach to assessment. We focus
on constructed answers such as text and diagrams rather than answers
requiring mere selection between alternatives. The HCC assessment process
is an active collaboration between humans and a software system, where the
software does the routine work and the humans make the important
judgements.

In this paper we focus on technology to support HCC marking of diagrams.
The basic idea is that many types of diagrams (e.g. UML class diagrams,
entity-relationship diagrams, chemical molecules, electronic circuits) can be
represented as boxes joined by connectors in a structure known in Computer
Science as a graph. Graphs can be matched against each other for similarity,
and the results used in various ways. This idea was invented independently
by groups at the Open University [2] and the University of Nottingham [3], as
well as at Manchester.

In our context we do not expect to use the results for fully automatic
summative marking. The aim is to present the information efficiently to the
human marker, filter out diagrams which really are identical, and improve the
speed and quality of the marking process significantly. We have already
shown that a similar approach works well for free text, even without applying
Natural Language Engineering techniques, although use of such techniques is
being investigated [8]. There are also interesting formative applications.

In the following section we explain how students draw diagrams and how
diagram questions are set up. Then we discuss the application of classical
graph theory, particularly graph isomorphism, to the problem. The limitations
of this approach lead to the development of a simple heuristic method which
is shown to be very effective. In the HCC context, user interface issues are
important, and we discuss these. Finally we outline the current directions of
the work and draw some conclusions.

Diagram drawing tools

The ABC system includes a tool to support the drawing of diagrams. The tool
consists of a palette and a drawing area. Students can select boxes from the
palette, place them anywhere on the drawing area and use connectors to join
them. Both boxes and connectors can be labelled, using both standard
keyboard characters and a range of additional ones.

Figure 1. The diagram editor

The diagram type is independent of the system's infrastructure and treated in
a uniform manner by it. The palette is fully customisable during examination
setting, depending on the kind of diagram the answer is expected to be.
Students may therefore be presented with only the components necessary for

the domain of the answer, or otherwise, at the examiner's discretion. Figure 2
shows that a much wider range of components is available to the exam setter
than would normally be presented to the student.

Figure 2. The palette builder

The ABC system uses XML to store structured answers. The XML description
corresponds to Java data structures. When the matching tool is run, it initially
creates Graph objects for each of the diagrams under consideration,
consisting of boxes and connectors. A Graph object can be created out of any
kind of box and connector combination, without any knowledge of the domain
the diagram belongs to.

Matching by graph isomorphism

In classical graph theory, a [simple] graph is defined as “a set of vertices and
a set of edges that connect pairs of distinct vertices (with at most one edge
connecting any pair of vertices)” [5, p.7]. Hence our boxes are vertices and
our connectors are edges. The creation of internal Graph objects enables the
execution of standard graph theory operations and algorithms.

The use of such algorithms was investigated and the use of isomorphism in
particular seemed a plausible approach: “Two graphs are isomorphic if we
can change the vertex labels on one to make its set of edges identical to the
other.” [5, p.10]. In this context, a correct answer would most likely be
isomorphic to, or at least contain an isomorphic subgraph of, a model answer.

Code was implemented to test whether two graph objects are isomorphic. If
they are, a list of matches of corresponding vertices is returned. If they are not
isomorphic, the aim is to identify one of the graphs' maximal isomorphic
subgraphs, the vertices of which, when renamed appropriately, would be
connected by the largest set of edges in the other graph. In this case, along
with the matching vertices, the percentage of the number of edges in the
maximal edge set, over the total number of edges is returned. The program
can handle both undirected and directed graphs (digraphs); in the latter case
the edges have a specified direction. The algorithm requires that all of the
graph's vertices lie within the same connected component, that is, there is a
path from every vertex to every other vertex in the graph. Figure 3 shows two
small isomorphic digraphs.

Figure 3. Two isomorphic digraphs

The program recognises that the graphs are isomorphic, and produces a list
of the relabellings required. For instance in the example the nodes labelled
1,3, 7 and 8 in the first graph need to be relabelled to 7, 8, 1 and 3
respectively.

The algorithm is recursive, and keeps running until either an isomorphism is
found or all possible recursive calls (within the available time and space) are
made. In the latter case, the maximal isomorphic subgraphs (the largest pair
of subgraphs within the two graphs which are isomorphic) are returned.

This implementation proved to work well even for large, artificial, example
graphs (1000 vertices, 100,000 edges for isomorphic graphs and 500 vertices,
5,000 edges for maximal isomorphic subgraph matching). Despite the fact
that the isomorphism problem is in principle computationally expensive [5,
p.10], in practice the cost is negligible for the size of graphs expected in
assessments.

However, isomorphism alone is neither necessary nor sufficient for the
purpose of diagram matching in examinations. Diagrams are not only graphs:
the information to be considered is much richer and components are
associated with various individual properties. Such properties include the
structure of the diagram's components, their types and labels. Even if two
graphs are isomorphic they may be completely different in terms of these
characteristics. However, the option of using isomorphism in combination with
the heuristics described in the next section is being considered.

A heuristic approach

The method currently being investigated involves the creation of Local Metric
(LM) objects for every box of every graph. An LM object contains information
such as the type of the box, its degree (number of incident connectors) and its
label, the number and types of adjacent boxes and the number and types of
incident connectors. The type of a component represents notionally what it is
used for within the diagram's domain (e.g. entity, attribute, relation, class,
molecule, transition, bond) and visually how it is drawn (frames/line for boxes,
end styles/line for connectors). Programmatically however, it is nothing more
than a unique string, depending in no way on the diagram's domain.
Additionally, an LM object implements methods to accommodate the
comparison of its properties to those of another box. Based on such
comparisons a score can be generated, expressing the percentage of
similarity between the two boxes.

The matching mechanism makes use of these scoring methods and attempts
to match every box of a diagram to a box of another diagram. Only the
currently unassigned boxes are taken into consideration, so no box is
matched to more than one other. Based on the individual box scores, a total
score expressing the similarity of the diagrams is calculated. The example in
figure 5, based on a 2nd year Computer Science paper examination on
databases, illustrates the matching process.

The diagrams show entities (boxes) with attributes (ovals) and relationships
(diamonds) and are known as entity-relationship (E-R) diagrams. The two
diagrams shown in Figure 5 are similar, but they also have some basic
differences. The idea is to compare every box in the first diagram against
every box in the second that has not been already assigned to a box in the
former, and generate a score. Of all the scores calculated, the highest one
would suggest a match.

Figure 5. Diagrams to be matched

When comparing two boxes, partial scores are calculated to express their
similarity, considering one of their properties at a time. The total score is the
weighted average of all the partial scores. Table 1 summarises the currently
available weighted metrics along with the methods used to generate the
partial scores. More such metrics are likely to be added in the future, as the
project progresses. The calculations for the metrics are given informally, as
the details are rather complicated in some cases, and subject to change
anyway.

The desire to be able to determine, automatically and dynamically, what
weight values will produce the maximum (or minimum, depending on the
human marker's preference) possible score led to the recent introduction of a
Weight Manager (WM). For every combination of the weights of each one of
the metrics in the LM objects, the WM runs a series of tests comparing every
(answer) graph against a model (if one is provided) or against every other
graph. The average score produced is used to characterise that specific
combination of weighted metrics. This way, the weights applied are
determined on the fly, and may be different for each set of graphs, allowing for
marking flexibility. One of the most obvious reasons to require varying weights
is the fact that labels on boxes have a highly variable relevance in matching.
Often they have a very strong influence, but for example there are cases
where in an E-R diagram, multiple attributes of the same name exist. The
diagrams in Figure 5, where two “name” attribute boxes exist in each of them,
are a simple example. In such cases, it is desired that the other metrics have
more weight, in order to distinguish among instances.

Metric Description Partial Score Calculation Method

Degree Number of
incident
connectors (≥1)

Return max score if the number is the same,
otherwise 0.

Type What this box
represents

Return max score if the type is the same,
otherwise 0

Adjacent
Boxes

The number of
adjacent boxes
and their types

Return an averaged score based on the number
of adjacent boxes which do and don’t have
matching types.

Incident
Connectors

The number of
incident
connectors and
their types

Return an averaged score based on the number
of incident connectors which do and don’t
have matching types.

Label The label's
string

Return max score if the labels are
identical, otherwise return a score based on
the edit distance between the labels. Above
a cutoff edit distance, return 0.

Table 1. The weighted metrics

As an example, the boxes labelled “buys”
in the previously considered diagrams
and their immediate surroundings, shown
in Figure 6, are used. Their degrees and
labels are the same, as are the number
and types of the connected boxes, so
these metrics give 100%. The types are
different so this metric gives 0. One of the
connectors matches, the others don’t, so
the scoring heuristic gives these a 33%
score.

Figure 6. Boxes to be matched
For this example, each metric is given a

weight of either 1 or 4, giving a total of 31 combinations (“all 1s” and “all 4s”
being equivalent), although metrics can easily be given any number of
weights, thus producing a potentially much larger number of combinations.
The results from 5 of these cases are shown in table 2. The cases are A: all
weights the same; B and C the weights which give the maximum and
minimums scores for whole diagram; D and E, the weights which give the
maximum and minimum scores just for the “buys” box.

Partial Scores (%) Total Scores (%)
Case Degree Type Adj. Boxes Inc. Connectors Label Box Diagram

A 100.0 0.0 100.0 33.33 100.0 66.66 78.3

B 400.0 0.0 100.0 33.33 100.0 57.57 85.18

C 400.0 0.0 400.0 133.33 400.0 78.43 76.08

D 400.0 0.0 400.0 33.33 400.0 88.09 77.12

E 100.0 0.0 100.0 133.33 100.0 39.39 84.43

Table 2. Partial and total score test results

Not surprisingly different weights give very different scores for the box.
However, the variation over the whole graph is much less – between 76% and
85%, This is typical for cases like this, and suggests that the process is
robust: varying the weights does not drastically alter the results. Subjectively,
a score of about 80% “seems about right” for these diagrams. However this
does not mean that the second diagram should be marked as e.g. 8 out of 10:
the human must make that judgement (at least in summative situations).

User interfaces issues

One of the system's requirements is that any differences or matches between
two graphs should be presented to the user in a clear and useful manner. One
aim is to minimise the time taken by, and the cognitive stress involved in,
marking. Another is to give useful formative feedback to students
automatically. Currently, boxes that have been matched between a model
graph and any number of answer graphs (many-to-one matching) are
highlighted with the same colour, as shown in Figure 7. This is very useful for
research purposes; trials with real users will be necessary to determine
whether this is a good presentation format in practice. Many-to-many
matching is also supported, producing a sortable table of scores. Both types
of matching can make use of the WM to determine on the fly the optimum
weights of metrics.

This screenshot demonstrates that although several differences do exist
between the two graphs, their boxes are successfully matched. Another pair
of diagrams depicting caffeine's chemical molecule (correctly in the second,
almost correctly but with an extra triple-bonded carbon atom on the far right in
the first) is shown in Figure 8. An interesting feature of the latter example is
that there are identical sub-structures in different parts of the graph (an N
bonded to three Cs, top right and bottom left). The localised nature of the
matching process means that it is not guaranteed to match these “the right
way round”, although in the example it does. This suggests that use of a
global structure check such as isomorphism in combination with the local
heuristics would improve the quality of information presented.

Figure 7. Diagram matching in action

Figure 8. Chemical diagrams being matched

What students really draw

Tests with real exam data produced some unexpected results, however. The
real data is remarkably messy, in particular student’s answers are often not
single connected graphs. Table 3 shows results from an online test where the
students had to draw UML diagrams representing a particular pattern. The
question constrained the answers much less than for the E-R diagrams.

Out of the 20 students that attempted to answer the question, four of them
produced diagrams which could not meaningfully be matched. Intermediate
cases also exist where labels characterising a box are attached just above or
below the box, and not in it. The system currently considers labelled boxes
where the label is in the box, hence diagrams including boxes mislabelled as
such received a low score.

 Scores (%)
Answers Using WM* Using WM** All 1s Human Std. Deviation***

Ans01 69.55 21.99 48.38 0 49.18
Ans02 81.00 67.81 73.58 80 0.707
Ans03 94.55 78.18 88.00 100 3.854
Ans04 76.36 34.56 43.04 80 2.574
Ans05 34.35 14.94 15.29 60 18.137
Ans06 65.13 45.98 55.29 80 10.515
Ans07 14.55 03.64 08.00 0 10.288
Ans08 87.88 32.88 73.33 80 5.572
Ans09 84.64 26.09 66.20 40 31.565
Ans10 51.67 43.33 51.33 0 36.536
Ans11 69.14 63.31 60.98 60 6.463
Ans12 59.44 50.69 52.86 100 28.68
Ans13 81.82 71.08 75.38 80 1.287
Ans14 89.45 57.82 76.80 80 6.682
Ans15 89.09 56.36 76.00 100 7.715

Average 69.90 40.51 57.63 62.67 14.65

*either 1s or 4s (32 combinations, 15x32=480 iterations), best case: degree = labels = connectors = 1,
type = boxes = 4
**either 1s or 4s (32 combinations, 15x32=480 iterations), worst case: labels = connectors = 4, degree
= type = boxes = 1
***Standard Deviation between human marker and WM* scores.

Table 3. Real examination data results

Nevertheless, there is a reasonable similarity between the system scores and
the marks (which were out of 5, scaled to percentages here), although clearly
not enough to contemplate automatic marking.

The labels in some of the boxes were practically essays, and dealing with
these sensibly is non-trivial. Simple heuristics were used here, but separate
work on text similarity detection will need to be incorporated.

Quite a few of the diagrams were awarded a low score by the system
because of the components the student placed and their consideration by the
system; for example, a “junction box” is practically transparent to the human
marker and only serves as a hook for connectors to be drawn forming angles.
However, the system currently considers it like any other box, and the addition
of an extra box in a graph of four or five makes a significant difference.

Generally, the diagrams considered for this trial were structurally very simple
allowing for unrestricted matching (in most diagrams including the model,
three out of four or four out of five boxes were of degree 1) and accurate
matching is largely dependant on the box labels, the matching of which is not
supported optimally yet. However, both the arithmetic and the visual results of
figure 8 show that the system extracts useful information, although there is
clearly space for improvement.

Figure 8. UML diagram matching

Related work

The DEAP system [2] comprises a drawing tool able to handle boxes,
connectors and associated text, and encode them into text for storage. The
text can be used to reconstruct the diagram, or identify its minimal meaningful
units (MMUs), which are then combined into higher level features and
compared against those of a model diagram; a grade is eventually awarded
based on their similarity. However, domain knowledge is required for this kind
of interpretation: “The identification stage uses domain knowledge to identify
what we have called minimal meaningful units (MMUs).” [6]. Additionally,
there is currently no way of expressing any kind of feedback visually, that is
non textually.

The DATsys system [3] provides a diagrammatic framework to CourseMarker
[4]. Research is currently being carried out to extend its capabilities into
automatic marking. Early work is described in [9], but, probably because of
the system being a commercial product, little current information is publicly
available.

Conclusions and further work

We have shown that a fairly simple heuristic approach to graph matching can
detect the similarities between diagrams effectively. One concern is that it
may “over-match” – show matches which are not actually valid. So long as the
purpose is only to provide input to the human marker, this is not a major
problem, but it can in any case be solved by combining the local heuristic
method with a global structural check (e.g. isomorphism) and by providing
additional information for special cases (e.g. non-commutative operators in
parse trees).

The work will be extended in a number of ways. For instance we will
investigate combinations of local heuristics and global structure checking, as
mentioned above, and incorporate better text matching for labels. For
diagrams where spatial relationships are important, and to handle
disconnected diagrams, we will probably introduce “pseudo connectors” which
represent “near to”, “on top of” etc. In the longer term, we plan to investigate
ways to deal with hand-drawn input. For instance university-level chemistry
diagrams are typically much more complicated than the example above, and
are very fiddly to draw with a mouse, so use of a drawing tablet is indicated.

A common theme in all our work is that real student data often contains
unexpected complications, and diagrams are no exception. Overall however,
we regard the results to date as encouraging.

Acknowledgements

The ABC project is funded by the University of Manchester Distributed
Learning Fund. Stuart Anderson constructed the graph drawing tools shown in
the first two figures, as well as many other parts of the ABC software.
Katherine Getao reviewed several drafts of this paper and her penetrating
questions were extremely helpful.

References

1) Sargeant J., Wood M.M., Anderson S.M.: A human-computer
collaborative approach to the marking of free text answers. Eighth
International Computer Assisted Assessment Conference,
Loughborough University, Loughborough, UK, 361-370.

2) DEAP Project, Open University
Available from: http://mcs.open.ac.uk/eap
[Accessed: 25 February 2005]

3) LTR Research Group, University of Nottingham
Available from: http://www.cs.nott.ac.uk/~ceilidh/people.html
[Accessed: 25 February 2005]

4) CourseMarker, University of Nottingham
Available from: http://www.cs.nott.ac.uk/CourseMarker
[Accessed: 25 February 2005]

5) Sedgewick R.Algorithms in Java, Part 5: Graph Algorithms, 3rd Ed.,
Boston: Addison-Wesley, 2004

6) Thomas P., Drawing diagrams in an online examination. Eighth
International Computer Assisted Assessment Conference,
Loughborough University, Loughborough, UK, 403-413.

7) Tselonis, C., Enhancements to the diagramming capabilities of a CAA
system. MSc dissertation, Department of Computer Science, University
of Manchester 2003

8) Wood, MM, Sargeant J, Jones CA., What students really say, paper
submitted to the Ninth International Computer Assisted Assessment
Conference, Loughborough University, Loughborough, UK

9) Tsintsifas A., A framework for the computer-based assessment of
diagram-based coursework, PhD thesis University of Nottingham UK,
2002.

	Diagram Matching for Human-Computer Collaborative Assessment
	Christos Tselonis, John Sargeant & Mary McGee Wood School of Computer Science, University of Manchester {tselonic, johns, mary}@cs.man.ac.uk
	Abstract
	Introduction
	Diagram drawing tools
	Matching by graph isomorphism
	A heuristic approach
	User interfaces issues
	What students really draw
	Related work
	Conclusions and further work
	Acknowledgements
	References

