
EXPORTABLE TECHNOLOGIES:
MATHML AND SVG OBJECTS FOR

CAA AND WEB CONTENT

Edward Ellis, Martin Greenhow and Justin Hatt

 Exportable Technologies: MathML and SVG
Objects for CAA and Web Content

Edward Ellis, Martin Greenhow and Justin Hatt
Department of Mathematical Sciences

Brunel University
mapgege@brunel.ac.uk
mastmmg@brunel.ac.uk
Justin.Hatt@brunel.ac.uk

Abstract

The aim of this short paper is to provide an update on our experiences with
using Mathematical Mark-up Language (MathML) and Scalable Vector
Graphics (SVG) within “Mathletics” – a suite of mathematics and statistics
objective question styles written within Perception’s QML language/Javascript.
We refer here to question style to stress that we author according to the
pedagogic and algebraic structure of a questions’ content; random
parameters are chosen at runtime and included within all elements of the
question and feedback, including the plain text source for MathML and SVG.
This results in each style having thousands, or even millions, of realisations
seen by the users. Much of what we have developed exists in template files
that contain functions called by any question style within the database; such
functions are therefore independent of any particular web-based system (we
user Perception), indeed, ordinary web pages. We reported on some of these
functions at the last CAA Conference (Baruah, Ellis, Gill and Greenhow 2005)
whilst basic concepts and terminology for MathML and SVG are introduced by
Ellis (2005). It should also be noted that the user’s choice of font colours &
sizes, and background colour, are all incorporated within the MathML and
SVG content. This means that equations and diagrams will be accessible to
those requiring larger/differently-coloured versions of the content’s default
options.

This paper further exploits:

The use of tables of arbitrary length to display an algorithm presentation
MathML. We here show how MathML can be generated effectively by our
“display” functions and incorporated into new question types

SVG diagrams. We show examples of the use of SVG to produce dynamic
diagrams and charts that accurately reflect the question’s random parameters
choice or statistical data. The SVG library of functions produce “objects”, such
as lines, text boxes, circles, etc that can be called by other functions that build
up super-objects such as decision boxes, bar charts, pie charts, Venn

http://www.caaconference.com/caamanagement/?&sortCur=1&colCur=1,2,3,0,5,18,12,13,11,10,15,14&showYear=THIS&showHidden=NO&filtCol=10&filtVal=mapgege@brunel.ac.uk
http://www.caaconference.com/caamanagement/?&sortCur=1&colCur=1,2,3,0,5,18,12,13,11,10,15,14&showYear=THIS&showHidden=NO&filtCol=10&filtVal=mastmmg@brunel.ac.uk
http://www.caaconference.com/caamanagement/?&sortCur=1&colCur=1,2,3,0,5,18,12,13,11,10,15,14&showYear=THIS&showHidden=NO&filtCol=10&filtVal=Justin.Hatt@brunel.ac.uk

diagrams etc. These are then concatenated within the question, to produce,
for example, a flow chart.

SVG graph plotter. Although MathML plotter applets exist, these are generally
not open code and therefore cannot be tailored to meet the pedagogic needs
of the question and/or feedback. We have therefore developed a graph plotter
that gives full control of how any Javascript-defined function is to be plotted,
including shading, labelling, highlighting of points of interest such as maxima
etc. The utility of such a plotter will be demonstrated within questions.

Content MathML. The test example presented at the last CAA conference has
been developed into actual questions.

Another aim of this paper is to include an introduction to our functions. We
believe that this will prove useful to a wide range of disciplines that contain
mathematical or graphical content. We show how such functions are exploited
in an ordinary web page and speculate on the structure of a teacher/lecturer’s
web page containing printable versions of all our question styles (over 1000)
with solutions for each student’s realisation. The plan is that the
teacher/lecturer will preview a question, select what he/she wants and build
up a problem sheet; finally printing will produce, say, 30 realisations of the
problem sheet (and matched solutions) for use in traditional teaching settings.

Example 1: The Use of Tables

Figure 1 displays parts of the feedback for a bubble sort question. Note the
alert box has been triggered since the input string, although of the correct
format, has incorrect length (known from the randomised length of the list of
random values, between 1 and 20, given in the question). This is an extension
of the checking described in the companion paper at this conference by
Baruah et al (2006). The essence of the algorithm is encapsulated in the
sequence of feedback tables, where cell colouring is used to show the
considered pairs before and after swaps and completed cells (green). The
coding for building these tables this is not long and completely general,
although for more extensive data sets, the feedback can take too long to
render.

Figure 1. Checking the input validity for a string match question and parts of the
feedback tables showing the bubble sort algorithm in action.

Example 2: Javascript and Presentation MathML

By considering a question in linear algebra (LU factorisation) we demonstrate
the utility of function to perform calculations and present the results in
MathML. The question type is interesting since the required element positions
(and question wording) change with each realisation – we call this positional
numerical input (PNI). Although quite extensive coding is required, the initial
set up that guarantees integer values for the answers is quite terse:

LT = getrandomtriangularmatrix(random, random, -5, 5, 0,0,1,0);
//creates the lower triangular matrix.
UT = getrandomtriangularmatrix(random, random, -5, 5, 0,1,0,0);
//creates the upper triangular matrix.
Bigmatrix = multimatrix(LT,UT);
//multiplies LT and UT together.

Here we have essentially started with the answer matrices LT and UT, calling
the getrandomtriangularmatrix function:

// Function getrandomtriangularmatrix(Nrow,Ncolumn,min,max,allowzero,LU,diagonalones)
will create a matrix of size Nrow x Ncolumn
// elements from min to max and if allowzero !=0 then zero is allowed and if LU=0 then a
Lower matrix is created and
// if LU=1 then an Upper matrix is created
function getrandomtriangularmatrix(Nrow,Ncolumn,min,max,allowzero,LU,diagonalones){
if (LU != 0 && LU != 1){alert("getrandomtriangularmatrix called illegally with LU = "+LU+". This
should be either 0 for a lower triangular matrix, or 1 for an upper triangular matrix")};
var Randomatrix = new Array
Randomatrix[0] = new Array;
for (k = 1 ; k <= Nrow ; k++) {Randomatrix[k] = new Array;}
for (var i = 1; i <= Nrow; i++)
 {for (var j = 1; j <= Ncolumn; j++){
 if (LU == 1){if(i <= j){number = displayarray(1,min,max,allowzero)}else{number = 0};}
 else{
 if (i >= j){number = displayarray(1,min,max,allowzero)}else{number = 0};}
 Randomatrix[i][j] = number;}
 }
if(diagonalones == 1){for(k = 1 ; k <= Nrow ; k++){Randomatrix[k][k] = 1;}}
return (Randomatrix);
}

The matrix on the right-hand side (Bigmatrix) is generated by the multimatrix
function, i.e. it is correct matrix arithmetic according to this “reverse
engineering” approach, typical of these questions where one needs to keep
control of the complexity of the arithmetic. Certain elements are then
overwritten as e.g. U1,3 etc before the display matrices are processed by a
displaymatrix function that returns the presentation MathML required for
rendering. This function (too long to present here) loops round column and

rows to concatenate a returned MathML string that is rendered by the WebEQ
viewer applet. Relevant parts of the (shortened) code are:

if (a > 0 && b > 0) {
for (k=1 ; k<=rowNumber ; k++) {
 for (i=1; i<=columnNumber; i++) {

 if (k==a && i==b) {rowelements[k] += "<mtd><mi color=RED
background=YELLOW>" + Rmtrix[k][i] + "</mi></mtd>";}

 else {rowelements[k] += "<mtd><mi>" + Rmtrix[k][i] + "</mi></mtd>";}}}}
for (p=1 ; p<=rowNumber ; p++) {
 therow[p] = "<mtr>" + rowelements[p] + "</mtr>";}
for (f=1 ; f<=rowNumber ; f++) {
 matrixrows[f] = therow[f];}
for (j=1; j<=rowNumber; j++) {
inside += matrixrows[j];}
return inside;

We see here the highlighting capabilities of MathML (although figure 2 uses a
slightly different technique).

Figure 2. Two realisations of a positional numerical input question.

Examples Using Scalable Vector Graphics

This section looks at the potential of scalable vector graphics (SVG) to
enhance the question design or feedback utility. The use of both geometrically
accurate diagrams and schematics for mechanics questions has been
reported by Gill and Greenhow (2006). Here we look at possibilities in other
areas. Figure 3 shows an obvious application, namely geometry.

Figure 3. Two realisations of a triangle display.

The coding behind the called function, SVG_triangle, returns the SVG plain
text code for rendering by the SVG viewer web page plug-in is quite
instructive, but too long to present here. However it is worth noting that the
arguments for all coordinates, lengths of sides, angles, labels are all listed,
but could be empty strings. This avoids writing many similar functions to
handle display where different input data is given. Figure 3 show all
arguments, whereas a real question would, for example, omit one of the
sides. The SVG_triangle calls functions returning “atomic components”, such
as lines, text boxes, sectors (shown with a yellow background in figure 3)
which handle the accessibility features, such as colours and font sizes.
Geometric objects such as lines are rescaled according to the font size (both
length and line thickness) and use the user’s choice of font colour by default.
A helper function angle_from_xy(x,y) is also called. It returns the polar angle
of point (x,y), needed since Javascripts’ arctan function returns the principal
value. Finally note that the order of concatenation of the SVG string can be
important, see Ellis (2005); in figure 3, the required string order is yellow
sectors, then angles, then lines of triangle, then lengths of sides (with opaque
background boxes reading the background colour of the page).

Another example of the efficacy of SVG is given in figure 4. The student is
asked to apply the first-fit algorithm to the data (the table length, names and
weights are randomised). The algorithm produces a shown matrix, but it
would be quite natural in class to draw this as a diagram. Dropping the
random weights and names into the string-generation loop allows this to
happen, producing an accurate and meaningful diagram in the feedback.

Figure 4. Question stem and components of the feedback for a first-fit question. The
SVG diagram accurately displays the data in an effective way.

SVG Graph Plotter

Other developments include an SVG graph plotter. Plotting graphs in SVG
has a number of advantages over using either images, or Java Applets.
Advantages compared to images have already been covered. The
advantages compared to Java Applets is that one can literally draw over the
top of the graph. This can prove invaluable in some case. For example,
highlighting the roots, turning points, or other significant features of functions.

Figure 5. Question stem of an integration question. The SVG graph plots the function
to be integrated, according to the random parameters in the integrand and integration

limits.

MathML Input (Content MathML)

Content MathML is exploited using a MathML Input question type previously
described (Baruah, Ellis, Gill and Greenhow 2005). Entry of free-form
Mathematical expressions allows question authors to move away from
Multiple Choice questions styles. A great deal of useful information can be
obtained from students in this fashion. For example, a question on partial
fractions is able to determine the number of fractions the student entered, and
the contents of each numerator and/or denominator. Such information can be
used to provide targeted feedback.

Figure 6. Question stem of a partial fractions question. Use of Content MathML allows
detailed analysis of a student’s response, without the disadvantages of multiple choice

questions types.

A Short List of Available Functions

All of the JavaScript functions can be placed within one of four classes.

1) Generate internal representations of mathematical entities.

2) Manipulate existing internal representations.

3) Convert internal representations into useful alternative representations.

4) Support functions, known as glue.

Examples:

All random generators are in class (1). Examples of these include:

a) rndGraphPoly(degree). This function returns an array representing a

polynomial. The polynomial has the property that all turning points

exist in the square where x exists [-1,1] and y exists [-1,1]. It is often

used in collaboration with the SVG graph plotter.

b) displayarray(num_elements,min,max,allowzero) returns a JavaScript

array. That array holds ‘num_elements’ numbers, each in the range

[min,max], with the option of excluding zero from that range.

Class (2) is mainly occupied by functions that perform calculations. Examples
include:

a) addpolynomial(coeffs1,n,coeffs2,m). This function takes two arrays

representing polynomials as arguments. It then returns a new array

that represents the sum of the first two arrays.

b) custRound(x,places) rounds the number ‘x’ to the number of decimal

places given by places.

Every MathML and SVG generating functions fit in class (3). Example are:

a) displaymatrix(Rmtrix) which returns the presentation MathML
representation of the two-dimensional array provided as an
argument.

b) SVG_triangle() which takes many arguments. It generates an SVG
representation of a triangle, details of which are specified by its
arguments. Figure 3 was created using this function.

Accessibility functions and other functions fit in class (4). For Example:

a) femalename(i) returns a female first name from an ethnically balance
set of names.

b) getFgColor() retrieves the current foreground setting, stored in the
cookie.

A more extensive list will be made available via the MSOR Centre website by
the summer of 2006.

Web Page Implementation of the Functions

It is important to stress that all of the above can be implemented in any web
based system or indeed, ordinary web pages, such as that shown in figure 6.
We believe that extracting the questions’ contents to such web pages will be
useful for teachers/lecturers who are not able or do not want to use a full CAA
system. Whilst marking functionality and answer file writing (and hence
analysis) is lost, there are practical advantages to paper-based objective
exercise sheets, not least that students can show their workings in the blank
spaces to the right of the questions and hand them in.

The anatomy of the web page is quite straightforward: functions are included
within script tags in the head, whilst the button, accessibility and credits at the
top right of the screen and content is included with a series of question
functions in the body (no processing function is needed). Thus a teacher can
alter font sizes and colours before printing and randomisation features in
question content, including MathML and SVG, is retained.

Figure 7. Implementation of functions and MathML in an ordinary web page. The
“Number of copies required:” button prints out this problem sheet, reloads it thereby
giving questions with new random parameters, prints again etc giving the required

number of copies and, separately, numbered answer sheets (planned development).

References

Baruah, N. Gill, M and Greenhow, M 2006 Issues with setting online objective
mathematics questions and testing their efficacy Proc 10th CAA Conf,
Loughborough, July. http://www.caaconference.com/

Ellis, E. 2005 An Introduction to MathML, SVG and JavaScript. MSOR CAA
Series. http://mathstore.ac.uk/articles/maths-caa-series/dec2005/

Ellis, E., Baruah, N., Gill, M., Greenhow, M. 2005 Recent developments in
setting objective tests in mathematics using QM Perception Proc 9th CAA
Conference, Loughborough, July http://www.caaconference.com

Gill, M. & Greenhow, M. 2006, Computer-Aided Assessment in Mechanics:
what can we do; what can we learn; how far can we go? Proc IMA Conf
Mathematical Education of Engineers, Loughborough, April.

	Edward Ellis, Martin Greenhow and Justin Hatt
	 Exportable Technologies: MathML and SVG Objects for CAA and Web Content
	Edward Ellis, Martin Greenhow and Justin Hatt
	Department of Mathematical Sciences
	Brunel University mapgege@brunel.ac.uk mastmmg@brunel.ac.uk Justin.Hatt@brunel.ac.uk
	Abstract
	Example 1: The Use of Tables
	 Example 2: Javascript and Presentation MathML
	 Examples Using Scalable Vector Graphics
	 SVG Graph Plotter
	 MathML Input (Content MathML)
	A Short List of Available Functions
	 Web Page Implementation of the Functions
	 References

