
DELIVERY OF QTIV2 QUESTION
TYPES

Gary Wills‡, Hugh Davis‡, Lester Gilbert‡,
Jonathon Hare‡, Yvonne Howard‡, Steve Jeyes†,

David Millard‡, and Robert Sherratt†

Delivery of QTIv2 Question Types

Gary Wills‡, Hugh Davis‡, Lester Gilbert‡, Jonathon Hare‡, Yvonne
Howard‡, Steve Jeyes†, David Millard‡, and Robert Sherratt†

‡Learning Societies Lab, University of Southampton, UK.

†e-Services Integration, University of Hull, UK

Abstract

The QTI standard identifies sixteen different question types which may be
used in on-line assessment. While some partial implementations exist, the
R2Q2 project has developed a complete solution that renders and responds
to all sixteen question types as specified. In addition, care has been taken in
the R2Q2 project to ensure that the solution produced will allow for future
changes in the specification. The paper summarises the rationale of Web
services and a Service Oriented Architecture, and then demonstrates how the
R2Q2 project integrates into JISC’s e-Framework, and the reference model
for assessment (FREMA1).

The design of R2Q2 is described, the focus being on lessons learnt. We
describe the architecture and the rationale of the internal Web services and
explain the approach taken in implementing the QTI specification, showing
how the design allows for future tags to be added with the minimal of
programming effort. A major objective of the design was to solve the problem
of having to undertake a major redesign and reimplementation as a result of
minor modifications to the specification.

In the 2006 Capital Programme from JISC, three new projects were
commissioned in the area of Assessment: one for authoring of items, one for
item banking, and one for a complete test engine as described in the QTI
specification. The R2Q2 Web service is at the heart of all three projects and
this paper will describe how the R2Q2 Web service will be used.

Introduction

Formative assessment aims to provide appropriate feedback to learners,
helping them gauge more accurately their understanding of the material set.
It is also used as a learning activity in its own right to form understanding or
knowledge. It is something lecturers/teachers would love to do more of but do
not have the time to develop, set, and then mark as often as they would like.
A formative e-assessment system allows lecturers/teachers to develop and

1 Framework Reference Model for Assessment http://www.frema.ecs.soton.ac.uk/

473

http://www.frema.ecs.soton.ac.uk/

set the work once, allows the learner to take the formative test at a time and
place of their convenience, possibly as often as they like, obtain meaningful
feedback, and see how well they are progressing in their understanding of the
material. McAlpine [11] also suggests that formative assessment can be used
by learners to “highlight areas of further study and hence improve future
performance”. Steve Draper [12] distinguishes different types of feedback,
highlighting the issue that although a system may provide feedback, its level
and quality is still down to the author.

E-learning assessment covers a broad range of activities involving the use of
machines to support assessment, either directly (such as web-based
assessment tools, or tutor systems) or indirectly by supporting the processes
of assessment (such as quality assurance processes for examinations). It is
an important and popular area within the e-learning community [6, 1, 2].
Within this broad view of e-learning assessment, the domain appears
established but not mature, as traditionally there has been little agreement on
standards or interoperability at the software level. Despite significant efforts
by the community, many of the most popular software systems are monolithic
and tightly coupled, and standards are still evolving. To address this there
has been a trend towards Service-Oriented Architectures (SOA). SOAs are
an attempt to modularise large complex systems in such a way that they are
composed of independent software components that offer services to one
another through well-defined interfaces. This supports the notion that any of
the components could be ‘swapped’ for a better version when it becomes
available.

One of the more popular standards that has emerged is Question and Test
Interoperability (QTI) developed by the IMS Consortium2. The QTI
specification describes a data model for representing questions and tests and
the reporting of results, thereby allowing the exchange of data (item, test, and
results) between tools (such as authoring tools, item banks, test
constructional tools, learning environments, and assessment delivery
systems) [10]. Wide take-up of QTI would facilitate not only the sharing of
questions and tests across institutions, but would also enable investment in
the development of common tools. QTI is now in its second version (QTIv2),
designed for compatibility with other IMS specifications, but despite
community enthusiasm there have been only a few real examples of QTIv2
being used, with no definitive reference implementation [8,9].

This paper presents the Web service R2Q2 and the Test delivery engine
ASDEL. R2Q2 is a JISC funded project that brings the SOA approach and
QTI standard together to develop a set of Web Services that will render and
respond to questions written to the QTI standard. The paper will also report
on the progress being made on the ASDEL project, again funded by JISC to
develop a QTIv2 compliant test delivery engine.

2 IMS QTI homepage: http://www.imsglobal.org/question/

474

http://www.imsglobal.org/question/

Service Oriented Architectures

Service-Oriented Architectures (SOAs) enable large complex systems to be
mutualised, that is composed of independent software components that
operate through well-defined interfaces. A service approach is ideally suited
to more loosely coupled systems, where individual parts may be developed by
different people or organizations. Wilson et al. [7] discuss in detail the
advantages of using a SOA: the ability to dynamically couple services,
interoperability of services due to clearly defined standards, and as a result
the ability to avoid technology ‘lock-in’.

Due to the nature of the loose coupling in a SOA, applications can be
developed and deployed incrementally. In addition, new features can be
easily added after the system is deployed. This modularity and extensibility
make SOA especially suitable as a platform for an assessment system with
evolving requirements and standards. Services are also appealing in terms of
their ability to be reused, as they have well-defined public interfaces.

One way to promote QTIv2 is through a reference implementation of the
standard written within the service-oriented paradigm. In the UK, the Joint
Information Systems Committee (JISC) is financed by all the Further and
Higher Education funding councils, and is responsible for providing advice
and guidance on the use of Information and Communications Technology
(ICT) for learning and teaching. Part of their strategy is the development of a
SOA framework for e-learning [5,7], and of reference models that describe
how different areas of e-learning can be supported by the framework. JISC
call this initiative simply the ‘e- Framework’.

The e-Framework is based on a service-oriented factoring of a set of
distributed core services [17], where flexible granular functional components
expose service behaviours accessible to other applications via loosely
coupled standards-based interfaces. The technology used is Web Services
and the intention is to extend the SOA programming model into a vast
networking platform that allows the publication, deployment, and discovery of
service applications on the scale of the Internet.

For the assessment domain, the reference model is FREMA (Framework
Reference Model for Assessment)3. The FREMA project has defined a
number of high level service profiles that describe how services can work
together within the assessment domain to fulfil particular use cases [4].

Question and Test Interoperability

The IMS QTI Specification is a standard for representing questions and tests
with a binding to the eXtended Markup Langage (XML, developed by the
W3C) to allow interchange. Figure 1 shows a short example of a question
expressed in this format, taken from the IMS QTI examples. This example is

3 FREMA homepage: http://www.frema.ecs.soton.ac.uk/

475

http://www.frema.ecs.soton.ac.uk/

a simple multiple choice question, illustrating the core elements: ItemBody
declares the content of the question itself, ResponseDeclaration declares a
variable to store the student’s answer, and OutcomeVariables declares other
resulting variables, in this case a score variable to hold the value of the result.

<?xml version="1.0" encoding="UTF-8"?>
<assessmentItem xmlns="http://www.imsglobal.org/xsd/imsqti_v2p0"
 identifier="choice" title="Unattended Luggage"
 adaptive="false" timeDependent="false">
 <responseDeclaration identifier="RESPONSE" cardinality="single"
 baseType="identifier">
 <correctResponse>
 <value>ChoiceA</value>
 </correctResponse>
 </responseDeclaration>
 <outcomeDeclaration identifier="SCORE" cardinality="single"
 baseType="integer">
 <defaultValue>
 <value>0</value>
 </defaultValue>
 </outcomeDeclaration>
 <itemBody>
 <p>Examine the following sign:</p>
 <p>

 </p>
 <choiceInteraction responseIdentifier="RESPONSE"
 shuffle="false" maxChoices="1">
 <prompt>What does it say?</prompt>
 <simpleChoice identifier="ChoiceA">You must stay with your
 luggage at all times.</simpleChoice>
 <simpleChoice identifier="ChoiceB">Do not let someone else look
 after your luggage.</simpleChoice>
 <simpleChoice identifier="ChoiceC">Remember your luggage when
 you leave.</simpleChoice>
 </choiceInteraction>
 </itemBody>
 <responseProcessing template =
 "http://www.imsglobal.org/question/qti_v2p0/rptemplates/match_correct"/>
</assessmentItem>

Figure 1: Example QTIv2 question (abridged for simplicity)

In R2Q2 we focus on rendering and responding to the 16 different types of
interactions described in version 2 of the QTI specification (QTIv2). These
are:

1) Choice 2) Hotspot
3) Order 4) Select point
5) Associate 6) Graphic
7) Match 8) Graphic Order
9) Inline Choice 10) Graphic Associate
11) Text Entry 12) Graphic Gap Match
13) Extended Text 14) Position object
15) Hot Text 16) Slider

The list of different question types can be combined with templated question
or adaptive response profiles, providing an author with numerous alternative

476

methods for writing questions appropriate to the needs of the students.
Templated questions include variables in their item bodies that are
instantiated when a question is rendered (for example, inserting different
values into the text of maths problems). Adaptive questions have a branching
structure, and the parts that a student sees depends on their answer to each
part of the branch. In total these allow for sixty-four different possible
combinations.

R2Q2 Design

The R2Q2 service allows a student to view a question, answer a question,
and view the feedback. The R2Q2 engine (see Figure 2) is a loosely coupled
architecture comprising of three interoperable services. All the interactions
with and within the R2Q2 engine are managed by an internal component
called the Router.

The Router is responsible for parsing and passing the various components of
the item (QTIv2) to the responsible web services. It also manages the
interactions of external software with the system, and it is therefore the only
component that handles state. This enables the other services to be much
simpler, maintaining a loosely coupled interface but without the need to
exchange large amounts of XML.

The Processor service processes the user responses and generates
feedback. The Processor compares the user’s answer with a set of rules and
generates response variables based on those rules. The Renderer service
then renders the item (and any feedback) to the user given these response
variables.

Figure 2 The R2Q2 Architecture

477

Integration into a Portal framework.

Figure 2 shows the core services where R2Q2 is used as a stand alone
service. To ensure wide-spread take up of the Web service, R2Q2 is also
designed to be dropped into applications such as a VLE, portal framework,
and test engine authoring tool, amongst other applications, to achieve the aim
of migrating the community to this new standard. To this end the project Web
site provides documentation for installation, and a single install process.

When integrating Web services with VLEs and portal frameworks, we have
found that you cannot just call a service, but code needs to be written to
manage calls to and information from the Web services. The generic name
for such a piece of code is an adaptor (see the EFSCE project4).

The R2Q2 project provides a demonstrator in the form of a Web client that
uses traditional XHTML and JAVA servlets to display the questions. There
are key differences to be considered between a portlet implementation of
R2Q2 and a more traditional simple servlet implementation. The java
PortletRequest object involves a protocol which is different from that of a
HTTPServeletRequest object. The main difference is that the portlet requests
contain additional information regarding the portlet window within the portal.
As a result, the way the request is handled will be different, for example within
the R2Q2 demo it is no longer possible to use the ServletFileUpload class as
a file upload handler for the request.

There are a number of open source portal frameworks that are currently being
used. They are all similar in that they are Java-based and use a Model View
Controller (MVC) architecture. The MVC architecture separates the
presentation code from the business logic code and is implemented using
Struts for web applications. Struts provide a mechanism by which the flow of
information is directed to the correct portlet. The way this is implemented
means that the system can scale quite easily. Struts model the various
functions of the portlet as ‘actions’. When an action URL is sent, a controller
redirects the portlet to the correct JSP page which connects to the Web
service.

ASDEL

R2Q2 successfully implemented a rendering and response engine for a single
question (also termed an item), for which there are sixteen types described in
the specification and implemented in R2Q2. While this is useful, it does not
implement the whole of the QTI specification regarding the test process. The
specification details how a test is to be presented to candidates, the order of
the questions, the time allowed, etc. The typical use-case from the point of
view of a learner candidate of the test process is illustrated in Figure 3.

4 EFSCE project Web page http://www.efsce.ecs.soton.ac.uk/overview

478

http://www.efsce.ecs.soton.ac.uk/overview

Figure 3: Use case of ASDEL from the user perspective

In the ASDEL project we aim to build an assessment delivery engine to the
IMS Question and Test Interoperability version 2.1 specifications that can be
deployed as a stand-alone web application or as part of a Service Oriented
Architecture enabled Virtual Learning Environment or portal framework. The
engine will provide for:

• Delivery of an assessment consisting of an assembly of QTI items,
with the possibility that the assessment is adaptive and the ordering
of questions can depend on previous responses,

• Scheduling of assessments against users and groups,
• Rendering of tests and items using a web interface,
• Marking and feedback,
• A web service API for retrieving assessment results.

Like R2Q2, the ASDEL project will use a Service Oriented Architecture (SOA).
The design of the ASDEL system specifies that the major components will be
created as internal Web services.

Phase 1 is the technical development of the engine in accordance with the
IMS QTIv2.1 specification and in accordance with the JISC e-Framework
approach of using web services in a Service Oriented Architecture (see Figure
4). The engine will take in a test as an IMS Content Package or by reference
to the test XMLfile. The engine will unpack the content package and
assemble the items into a directory on a local file system. The engine will
import any additional material (images, videos, etc) required by the test, and it
will then process the XML and deliver the test as scheduled to the candidate
via a Web interface. Feedback will be given to the candidate and the marks
processed in accordance with the schema sent to the engine. The results can
be retrieved through the engine API. The engine will also have the additional
features of being able to persist partially completed tests for future
completion, and the ability to record candidate responses (in addition to
results) for later review.

479

Figure 4. Architecture for the Assessment Delivery system.

The core components of the ASDEL system will be built around a Java library,
which has been termed JQTI. The JQTI library will enable valid QTI
assessment XML documents to be interpreted and executed. The library will
also provide auxiliary services like the handling of QTI content packages and
the provision of valid QTI conformance profiles and reports.

The AssemblerRenderingEngine part of the system is responsible for the
assembly and rendering of output (i.e. questions and associated rubric).
Initially, only an XHTML renderer will be developed; however, the design of
the engine will enable different renderers to be plugged in.

Figure 5 illustrates the typical sequence of events when a user is interacting
with the ASDEL system through a particular portal or VLE. Figure 6 shows
the typical initialisation stages that the system goes through when a test
package is presented, and Figure 7 demonstrates the typical collaborations
between system parts when the a learner is undertaking a test.

480

Figure 5: Typical sequence of events within the ASDEL system

Figure 6: Collaborations between components during initialisation of a
test

481

Figure 7: Collaborations between components as a test is undertaken

Figure 8. Phase Two: Integration of the ASDEL, AQuRate Item
Authoring (Kingston) and MiniBix, Item Banking (Cambridge).

In the second phase, the project will integrate with the other projects in the
JISC Capital Programme call on item banking (Cambridge: Minibix) and item
authoring (Kingston: AQuRate) to provide a demonstrator, and will contribute
to its evaluation and the evaluation of the project.

482

Figure 8 shows a modified diagram of the Use Case from the QTI v2
specification, demonstrating how the different tools and system in this call
relate together. It clearly shows the boundaries between the delivery system,
authoring tool, and item banking. A general scenario would be:

1. A lecturer/tutor will write questions (items). The authoring tool will
provide a user interface appropriate to the end user, and format and
store the items using the QTI v2 standard. By using QTIv2 these
items may be exchanged with other compliant systems not
developed by the same developer.

2. Users can select items from the item bank and place the items in a
pool ready for constructing into a test. The test construction
system, like the item authoring tool, will use an appropriate user
interface and behind the scenes output the test in a QTI v2 or IMS
CP compliant format.

3. By having the test and item adhere to the QTIv2 specifications, the
deployment of items, item banks, and tests from diverse sources
can be delivered through the test delivery system to candidates via
a leaning environment or directly via their internet browser.

4. The candidate can now take the test, and have the results reported
in a consistent manner.

The integration in this workpackage may be best achieved by using a using a
portal framework to integrate the different projects.

Changes to R2Q2

During the design and implementation of ASDEL a number of issues have
been identified in R2Q2 that will need to be fixed before the implementation is
complete. Firstly, the default R2Q2 renderer renders full xhtml pages rather
than rendering fragments. ASDEL requires fragments so that it can append
various elements of rubric and other textual information about the test before
and after the question. In the bigger picture, the output from ASDEL also
needs to be in the form of a fragment so that it can be integrated with a VLE
or portal framework. The second issue is that R2Q2 will always render the
feedback that is included in an item. The problem is that the QTI assessment
specification allows the delivery engine to control whether or not the feedback
from an individual item should be delivered.

Conclusions

At a recent conference, the UK assessment community confirmed that kick-
starting the use of the IMS Question and Test Interoperability version 2
specifications was a high priority. Whilst earlier versions of the specification
provided most of the functions needed by practitioners, to ensure future
interoperability it was considered essential that tools migrate to this new
standard. However there was little incentive to move towards the new
specification as existing public implementations are incomplete. The

483

conference concluded that there needed to be a robust set of tools and
services that conformed to the QTIv2 specification to facilitate this migration.

R2Q25 is a definitive response and rendering engine for QTIv2 questions.
While this only deals with an Item in QTI terms, it is essential to all processing
of QTI questions; that is, it forms the core component of all future systems.
Due to the design and use of internal Web services, the system could be
enhanced if required. So while every effort has been made to ensure this
service can be dropped into future systems, if necessary it can be changed to
suit any application. The R2Q2 rendering and response engine of QTIv2
questions is expected to help two main stakeholders:

• Early adopters of QTIv2 have written questions to this
specification and need to validate the question. To help them we
have provided a Web client to which they can submit questions and
see the rendered version.

• Other e-Framework Projects. We have provided the core
elements of QTIv2 appropriate to a service oriented architecture.
Applications in the area of e-assessment, and other aspects of the
specification, need to be developed. The R2Q2 project would be an
essential element in such future work.

In the ASDEL project we aim to build an assessment delivery engine to the
IMS Question and Test Interoperability version 2.1 specifications. Like R2Q2
this will be a Web service based system that can be deployed as a stand-
alone web application or as part of a Service Oriented Architecture enabled
Virtual Learning Environment or portal framework. The engine will provide for:

• Delivery of an assessment consisting of an assembly of QTI items,
with the possibility that the assessment is adaptive and the ordering
of questions can depend on previous responses,

• Scheduling of assessments against users and groups,
• Rendering of tests and items using a web interface,
• Marking and feedback,
• A web service API for retrieving assessment results.

5 http://www.r2q2.ecs.soton.ac.uk/.

484

http://www.r2q2.ecs.soton.ac.uk/blog/

References

[1] Bull, J., and McKenna, C. Blueprint for Computer Assisted Assessment.
Routledge Falmer, 2004.

[2] Conole, G. and Warburton, B. "A review of computer-assisted
assessment". ALT-J Research in Learning Technology, vol. 13, pp. 17-31,
2005.

[3] Cooper, A. and Reimann, R. About Face 2.0: The Essentials of Interaction
Design. John Wiley & Sons, 2003.

[4] Davies, W. M., Howard, Y., Millard, D. E., Davis, H. C. and Sclater, N.
Aggregating Assessment Tools in a Service Oriented Architecture. In
Proceedings of 9th International CAA Conference, Loughborough. 2005.

[5] Olivier, B., Roberts, T., and Blinco, K. "The e-Framework for Education
and Research: An Overview". DEST (Australia), JISC-CETIS (UK), www.e-
framework.org, accessed July 2005.

[6] Sclater, N. and Howie K. User requirements of the ‘‘ultimate’’ online
assessment engine, Computers & Education, 40, 285–306 2003.

[7] Wilson, S., Blinco, K., and Rehak, D. Service-Oriented Frameworks:
Modelling the infrastructure for the next generation of e-Learning Systems.
JISC, Bristol, UK 2004.

[8] APIS [Assessment Provision through Interoperable Segments] - University
of Strathclyde–(eLearning Framework and Tools Strand)
http://www.jisc.ac.uk/index.cfm?name=apis, accessed 30 April 2006.

[9] Assessment and Simple Sequencing Integration Services (ASSIS) – Final
Report – 1.0. http://www.hull.ac.uk/esig/downloads/Final-Report-Assis.pdf,
accessed 29 April 2006.

[10] IMS Global Learning Consortium, Inc. IMS Question and Test
Interoperability Version 2.1 Public Draft Specification.
http://www.imsglobal.org/question/index.html, accessed 9 January 2006.

[11] McAlpine, M. Principles of Assessment, Bluepaper Number 1, CAA
Centre, University of Luton, February 2002.

[12] Draper, S. W. Feedback, A Technical Memo Department of Psychology,
University Of Glasgow, 10 April 2005:
http://www.psy.gla.ac.uk/~steve/feedback.html.

485

http://www.e-framework.org/
http://www.e-framework.org/
http://www.jisc.ac.uk/index.cfm?name=apis
http://www.hull.ac.uk/esig/downloads/Final-Report-Assis.pdf
http://www.imsglobal.org/question/index.html
http://www.psy.gla.ac.uk/%7Esteve/feedback.html

	 Delivery of QTIv2 Question Types
	Gary Wills‡, Hugh Davis‡, Lester Gilbert‡, Jonathon Hare‡, Yvonne Howard‡, Steve Jeyes†, David Millard‡, and Robert Sherratt† ‡Learning Societies Lab, University of Southampton, UK. †e-Services Integration, University of Hull, UK
	Abstract
	Introduction
	Service Oriented Architectures
	Question and Test Interoperability
	R2Q2 Design
	Integration into a Portal framework.
	ASDEL
	Changes to R2Q2
	Conclusions
	 References

